
July 2019 AN5027 Rev 2 1/66

1

AN5027
Application note

Interfacing PDM digital microphones using
 STM32 MCUs and MPUs

Introduction

Digital MEMS (microelectromechanical systems) microphones target all audio applications
where small size, high sound quality, reliability and affordability are key requirements.

Their combination of small footprint and noise immunity allows the implementation of
multiple microphones in a single device, creating an increasing growth of audio in industrial
and consumer applications by offering a hands-free human machine interface, noise
cancellation, and high quality audio capture.

The STM32 32-bit Arm® Cortex® MCUs and the STM32 Arm® Cortex® MPUs offer a wide
audio capability with a rich connectivity, including serial and enhanced voice-acquisition
interfaces allowing the user to easily build solution for microphone-based applications.

This document targets digital MEMS microphones having a pulse-density modulated (PDM)
output and describe how to connect them in mono and stereo configurations to STM32
MCUs and MPUs by using the SPI/I2S, SAI and DFSDM peripherals. It provides guidelines
and examples based on STM32CubeMX and shows how to properly configure the STM32
device to acquire and handle raw data from the microphones in order to transform this raw
data into standard data for audio.

www.st.com

http://www.st.com

Contents AN5027

2/66 AN5027 Rev 2

Contents

1 PDM digital microphones overview . 7

1.1 Sound acquisition overview . 7

1.2 PDM digital microphone block diagram . 8

1.3 Basic digital microphones connection . 9

1.4 PDM and PCM signals . 12

1.4.1 Pulse density modulation (PDM) . 12

1.4.2 Pulse code modulation (PCM) . 12

1.4.3 PDM to PCM conversion . 13

1.5 Acoustic parameters . 13

1.5.1 Sensitivity . 13

1.5.2 Signal-to-noise ratio (SNR) . 13

1.5.3 Acoustic overload point (AOP) . 14

1.5.4 Power supply rejection ratio (PSRR) . 14

1.6 Added value of digital microphones . 14

1.7 Available ST digital microphones . 15

2 Connecting PDM digital microphones to STM32 MCUs and MPUs . . 16

2.1 Serial peripheral interface (SPI) /Inter-IC sound (I2S) 16

2.1.1 Mono configuration . 16

2.1.2 Stereo configuration . 18

2.2 Serial audio interface (SAI) . 20

2.2.1 Using a single sub-block . 20

2.2.2 Using two synchronous SAI sub-blocks . 23

2.2.3 Using PDM interface . 24

2.3 Digital filter for sigma delta modulators (DFSDM) 27

2.3.1 Stereo configuration . 28

2.4 Clocking considerations . 28

2.4.1 The digital microphone clock . 28

2.4.2 The peripheral clocks . 29

2.5 GPIOs number considerations . 31

3 Digital signal processing . 32

3.1 PDM audio software decoding library . 32

AN5027 Rev 2 3/66

AN5027 Contents

3

3.1.1 Overview . 32

3.1.2 Digital data flow . 32

3.1.3 Digital signal processing . 33

3.2 DFSDM filters for digital signal processing . 34

3.2.1 Digital data flow: acquisition and processing . 34

4 Examples of configuration based on STM32CubeMX 35

4.1 Example 1: Interfacing digital microphones in mono or
stereo mode with I2S, SPI or a single SAI sub-block 35

4.1.1 Hardware configuration using STM32CubeMX 35

4.1.2 Adding PDM software decoding library middleware files 47

4.2 Example 2: Interfacing digital microphones in stereo mode
with SAI using two synchronous sub-blocks . 48

4.2.1 SAI configuration using STM32CubeMX . 48

4.2.2 Adding PDM software decoding library middleware files 53

4.3 Example 3: Interfacing digital microphones in stereo mode
with SAI using PDM interface . 53

4.3.1 SAI configuration using STM32CubeMX . 53

4.3.2 Adding PDM software decoding library middleware files 57

4.4 Example 4: Interfacing digital microphones using DFSDM 58

4.4.1 DFSDM configuration using STM32CubeMX . 58

5 Conclusion . 64

6 Revision history . 65

List of tables AN5027

4/66 AN5027 Rev 2

List of tables

Table 1. DOUT signal pattern selection . 9
Table 2. Pin description . 9
Table 3. Added value of digital microphone . 14
Table 4. ST digital microphones . 15
Table 5. Recommended IO lines versus the number digital microphones

to be connected . 24
Table 6. Applications examples and the associated microphone clock frequency 29
Table 7. Hardware used to connect one digital microphone. 31
Table 8. Hardware used to connect two digital microphones . 31
Table 9. Hardware used to connect four digital microphones. 31
Table 10. I2S2 clock configuration and accuracy . 36
Table 11. SPI clock configuration and accuracy. 39
Table 12. Clock configuration and accuracy. 42
Table 13. SAI clock configuration and accuracy. 49
Table 14. DFSDFM filter order values . 60
Table 15. DFSDM clock configuration accuracy values . 63
Table 16. Document revision history . 65

AN5027 Rev 2 5/66

AN5027 List of figures

6

List of figures

Figure 1. Example of sound acquisition in audio application . 7
Figure 2. Typical PDM digital MEMS microphone block diagram . 8
Figure 3. Mono configuration - Generating data on right channel . 9
Figure 4. Right channel data pattern . 10
Figure 5. Mono configuration - Generating data on left channel . 10
Figure 6. Left channel data pattern . 10
Figure 7. Stereo configuration: Sharing one data line . 11
Figure 8. Stereo configuration data pattern . 11
Figure 9. PDM signal . 12
Figure 10. PCM signal . 13
Figure 11. Connecting one digital microphone to SPI or I2S in mono configuration 17
Figure 12. Connecting two digital microphone to SPI block in stereo configuration 18
Figure 13. Stereo mode timing diagram. 19
Figure 14. Connecting one digital microphone to SAI in mono configuration 20
Figure 15. Connecting two digital microphones to SAI in stereo configuration

using a SAI sub-block and a timer . 22
Figure 16. Connecting two digital microphone to SAI in stereo configuration

using two synchronous SAI sub-blocks . 23
Figure 17. PDM interface capability on interfacing up to four microphone pairs 25
Figure 18. Data format when using the SAI PDM interface with a slot size of 32 bits,

and 8 microphones . 26
Figure 19. Data format when using the SAI PDM interface with a slot size of 8 bits,

and 8 microphones . 26
Figure 20. DFSDM capability to interface up to 4 digital microphones . 27
Figure 21. Stereo configuration . 28
Figure 22. Bus and kernel clock topology for SPI . 30
Figure 23. Bus and kernel clock topology for SAI and DFSDM . 30
Figure 24. Digital data acquisition and processing (block diagram). 33
Figure 25. Digital signal processing . 33
Figure 26. Digital data acquisition and processing using DFSDM (block diagram) 34
Figure 27. I2S GPIO pin configuration . 36
Figure 28. I2S2 clock configuration . 37
Figure 29. I2S configuration. 37
Figure 30. I2S parameter settings . 38
Figure 31. I2S DMA settings . 38
Figure 32. SPI GPIO and pin configuration . 39
Figure 33. SPI clock configuration . 39
Figure 34. SPI configuration . 40
Figure 35. SPI parameter setting . 40
Figure 36. SPI DMA settings . 41
Figure 37. SAI GPIO and pin configuration . 41
Figure 38. SAI clock configuration at 16 kHz for mono mode . 42
Figure 39. SAI configuration . 43
Figure 40. SAI parameter setting . 44
Figure 41. SAI DMA settings . 45
Figure 42. DMA request settings . 45
Figure 43. TIM GPIO and pin configuration . 46
Figure 44. TIM configuration . 46

List of figures AN5027

6/66 AN5027 Rev 2

Figure 45. TIM parameter settings. 47
Figure 46. SAI GPIO and pin configuration . 48
Figure 47. SAI clock configuration . 49
Figure 48. SAI parameter settings . 51
Figure 49. SAIB parameter settings. 52
Figure 50. SAI DMA settings . 52
Figure 51. SAI GPIO and pin configuration . 53
Figure 52. SAI clock configuration for 2 microphones at 16 kHz . 54
Figure 53. SAI configuration . 54
Figure 54. SAI parameter settings . 55
Figure 55. SAI DMA settings . 56
Figure 56. CORTEX_M7 configuration . 56
Figure 57. Cortex M7 parameter settings . 57
Figure 58. DFSDM GPIO configuration in stereo mode. 58
Figure 59. DFSDM pin configuration . 59
Figure 60. DFSDM Channel 1 configuration . 59
Figure 61. DFSDM Channel 0 configuration . 60
Figure 62. DFSDM Filter 0 configuration . 61
Figure 63. DFSDM Filter 1 configuration . 61
Figure 64. DFSDM output clock configuration . 62
Figure 65. DFSDM DMA setting . 62
Figure 66. DFSDM clock configuration . 63

AN5027 Rev 2 7/66

AN5027 PDM digital microphones overview

64

1 PDM digital microphones overview

This section provides a brief description of PDM digital microphones and presents basic
cases of interfacing them with STM32 devices. STM32 MCUs and MPUs are Arm®(a) based
devices.

1.1 Sound acquisition overview

The digital MEMS microphone is a sensor that convert acoustic pressure waves into a
digital signal. The STM32 MCUs and MPUs acquire digital data from the microphone(s)
through particular peripherals to be processed and transformed into data standard for audio.
The audio data is then handled by the microcontroller according to the targeted audio
application.

Figure 1. Example of sound acquisition in audio application

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Data acquisition and processing

Sound acquisition

Audio

application

Voice recognition

High quality
audio record

Noise cancellation

Digital MEMS Microphone

Sound wave
STM32 MCU

MS47180V1

PDM digital microphones overview AN5027

8/66 AN5027 Rev 2

1.2 PDM digital microphone block diagram

The main parts in a digital microphone are a MEMS transducer, an amplifier and a PDM
modulator.

Figure 2. Typical PDM digital MEMS microphone block diagram

MEMS transducer

The MEMS transducer is a variable capacitance that converts the change into air pressure
caused by sound waves to a voltage.

Amplifier

The amplifier buffers the voltage provided by the MEMS transducer, and provides a
sufficiently strong signal to the PDM modulator.

PDM modulator

PDM modulator converts the buffered analog signal into a serial pulse density modulated
signal. The clock input (CLK) is used to control the PDM modulator. The clock frequency
range for ST digital microphones is from 1 MHz to 3.25 MHz. This frequency defines the
sampling rate at which the amplifier’s analog output signal is sampled to produce a discrete-
time representation (PDM bitstream).

Channel select

The microphone’s output is driven to the proper level on a selected clock edge and then
goes into a high impedance state for the other half of the clock cycle. The channel select
defines the clock edge on which the digital microphone outputs valid data. The LR pin must
be connected to Vdd or GND.

Table 1 shows how to select the DOUT signal pattern.

MEMS
TRANSDUCER

PDM
MODULATOR

POWER

AMPLIFIER

CHANNEL
SELECT

CLK

Vdd GND

DOUT

LR

MS47147V1

AN5027 Rev 2 9/66

AN5027 PDM digital microphones overview

64

Power

Power delivers Vdd and GND supplies to the different digital microphone’s components. The
power supply should be properly provided to the microphone since any ripple can generate
noise on the output.

Pin description

1.3 Basic digital microphones connection

Mono mode

In this mode the LR pin can be either connected to Vdd or to GND.

LR pin is connected to Vdd

Figure 3. Mono configuration - Generating data on right channel

On the rising edge of the clock, the microphone generates valid data for half of the clock
period, then goes into a high impedance state for the other half.

Table 1. DOUT signal pattern selection

LR
DOUT

CLK low CLK high

GND Valid data High impedance

Vdd High impedance Valid data

Table 2. Pin description

Pin name Function Direction

Vdd 3.3 V power supply Input

GND 0 V Input

LR Left/right selection Input

CLK Synchronization clock Input

DOUT Left/righ PDM data output Output

CLOCK OUTPUT

Vdd
LR

DOUT

CLK

STM32
DATADATA INPUT

MS47148V1

PDM digital microphones overview AN5027

10/66 AN5027 Rev 2

Figure 4. Right channel data pattern

LR pin is connected to GND

Figure 5. Mono configuration - Generating data on left channel

On the falling edge of the clock, the microphone generates valid data for half of the clock
period, then goes into a high impedance state for the other half.

Figure 6. Left channel data pattern

CLK

DATA
HIGH ZHIGH Z HIGH Z

Valid Data Valid Data

MS47149V1

CLOCK OUTPUT

DOUT

CLK

STM32
DATA

DATA INPUT

GND

LR

MS47150V1

CLK

DATA
HIGH Z HIGH Z

Valid Data Valid DataValid Data

MS47151V1

AN5027 Rev 2 11/66

AN5027 PDM digital microphones overview

64

Stereo configuration

Figure 7. Stereo configuration: Sharing one data line

Two different digital MEMS microphones are connected on the same data line, configuring
the first to generate valid data on the rising edge of the clock by setting the LR pin to Vdd
and the other on the falling edge by setting the LR pin to GND.

Figure 8. Stereo configuration data pattern

GND

LR

DOUT

CLOCK OUTPUT

Vdd
LR

DOUT

CLK

CLK

STM32

DATA L

DATA RDATADATA INPUT

MS47152V1

Data right

Data left

DATA R HIGH ZHIGH Z HIGH ZR R

CLK

DATA L HIGH Z HIGH ZL L L

MS47153V1

DATA R RL L L

PDM digital microphones overview AN5027

12/66 AN5027 Rev 2

1.4 PDM and PCM signals

1.4.1 Pulse density modulation (PDM)

PDM is a form of modulation used to represent an analog signal in the digital domain. It is a
high frequency stream of 1-bit digital samples. In a PDM signal, the relative density of the
pulses corresponds to the analog signal's amplitude. A large cluster of 1s correspond to a
high (positive) amplitude value, when a large cluster of 0s would correspond to a low
(negative) amplitude value, and alternating 1s and 0s would correspond to a zero amplitude
value.

Figure 9. PDM signal

1.4.2 Pulse code modulation (PCM)

In the PCM signal, specific amplitude values are encoded into pulses.

A PCM stream has two basic properties that determine the stream's fidelity to the original
analog signal:

• the sampling rate

• the bit depth

The sampling rate is the number of samples of a signal that are taken per second to
represent it digitally. The bit depth determines the number of bits of information in each
sample.

MS47154V1

-1

0

1

Analog signal PDM signal
MS47154V1

-1

00000000000000000

1

AN5027 Rev 2 13/66

AN5027 PDM digital microphones overview

64

Figure 10. PCM signal

1.4.3 PDM to PCM conversion

In order to convert the PDM stream into PCM samples, the PDM stream needs to be filtered
and decimated.

In the decimation stage, the sampling rate of the PDM signal is reduced to the targeted
audio sampling rate (16 kHz for example). By selecting 1 of each M samples, the sample
rate is reduced by a factor of M. Therefore, the PDM data frequency (which is the frequency
of the microphone clock) is M times the target audio sampling frequency needed in an
application, where M is the decimation factor.

PDM frequency = Audio sampling frequency × decimation factor

The decimation factor is generally in the range of 48 to 128.

The decimation stage is preceded by a low-pass filter to avoid distortion from aliasing.

1.5 Acoustic parameters

1.5.1 Sensitivity

The sensitivity is the level of the electrical signal (expressed in dBFS) that the digital
microphone outputs for a given acoustic reference signal.

Generally the sensitivity of a microphone is given using a tone of 1 kHz, at 1 Pa (or 94
dBSPL) as reference signal.

1.5.2 Signal-to-noise ratio (SNR)

The SNR specifies the ratio between the reference signal (94 dBSPL@1kHz) and the
amount of residual noise at the microphone output.

Higher SNR offers enhanced voice clarity as well as far-end (hands-free) intelligibility.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Analog signal
PCM signal

MS47155V1

PDM digital microphones overview AN5027

14/66 AN5027 Rev 2

1.5.3 Acoustic overload point (AOP)

The AOP is the maximum acoustic signal, which the microphone can capture with
acceptable distortion (some specifications allow up to 10% in terms of distortion at the
acoustic overload point).

1.5.4 Power supply rejection ratio (PSRR)

The PSRR specification quantifies the capability of the microphone to reject noise relative to
power supply changes.

1.6 Added value of digital microphones

Table 3. Added value of digital microphone

Feature Added value

Immunity to RF noise and
electromagnetic interference (EMI)

– Less integration effort

Analog signal conditioning not
required

– Easier application design

– Direct interface to codecs with digital microphones
interface

– Stereo mode needs only one data line

– Significant saving on PCB area with more microphones in
system

– Flexibility to add additional microphones into the
application

Robust digital transmission

– Easy MEMS positioning on application system

– Standard digital conditioning

– Allows audio enhancement integration for stereo capture,
noise cancellation and beam forming

AN5027 Rev 2 15/66

AN5027 PDM digital microphones overview

64

1.7 Available ST digital microphones

Table 4 shows the available ST digital microphone.

Table 4. ST digital microphones

Part number
Top/bottom

port
Supply voltage

(V)
SNR
(dB)

Sensitivity
(dBFS)

AOP
(dBSPL)

MP34DB02 Bottom 1.64 to 3.6 62.6 -26 120

MP34DT01-M Top 1.64 to 3.6 61 -26 120

MP34DT02 Top 1.64 to 3.6 60 -26 120

MP34DT04 Top 1.6 to 3.6 64 -26 120

MP34DT04-C1 Top 1.6 to 3.6 64 -26 120

MP34DT05 Top 1.6 to 3.6 64 -26 122.5

MP45DT02-M Top 1.64 to 3.6 61 -26 120

Connecting PDM digital microphones to STM32 MCUs and MPUs AN5027

16/66 AN5027 Rev 2

2 Connecting PDM digital microphones to STM32
MCUs and MPUs

This section describes how to connect digital MEMS microphones to the SPI/ I2S, SAI and
DFSDM peripherals embedded in STM32 MCUs and MPUs in both mono and stereo
configurations.

2.1 Serial peripheral interface (SPI) /Inter-IC sound (I2S)

The STM32 MCUs and MPUs offer a serial peripheral interface block named SPI. Some of
these SPI blocks also offer the possibility to use the Inter-IC sound audio protocol (I2S). In
addition, the STM32 devices offer two versions of the SPI block, in this document, the oldest
version is named SPI-V1, and latest version is named SPI-V2. When we refer to SPI block it
means indifferently SPI-V1 or SPI-V2.
The SPI-V2 is currently available on STM32H7 Series.
It is possible to connect one or two digital microphones to a SPI block by either using the
SPI or I2S protocol.

• The SPI protocol provides simple communication interface allowing the
microcontrollers to communicate with external devices.

• The I2S protocol is widely used to transfer audio data from a microcontroller/DSP
(digital signal processor) to an audio codec, in order to play melodies or to capture
sound from a microphone.

2.1.1 Mono configuration

A single digital microphone is connected to the SPI block. The SPI block can be configured
either in SPI or in I2S mode.
In both cases, the SPI block is configured in master receiver mode. In this mode, the periph-
eral provides the clock to the digital microphone. The audio samples are acquired through
the serial data pin.

AN5027 Rev 2 17/66

AN5027 Connecting PDM digital microphones to STM32 MCUs and MPUs

64

Figure 11. Connecting one digital microphone to SPI or I2S in mono configuration

If the SPI protocol is used, the L/R channel selection (LR) pin of the microphone can be con-
nected either to Vdd or to GND. The SPI clock polarity shall be aligned with the configura-
tion of L/R input.

• If L/R = GND, then the SPI shall sample the incoming data using the rising edge of
SPIx_SCK,

• If L/R = Vdd, then the SPI shall sample the incoming data using the falling edge of
SPIx_SCK,

If the I2S protocol is used, it is recommended to set the L/R channel selection (LR) pin of the
microphone to GND. By default the I2S protocol samples the incoming data using the rising
edge of I2Sx_CK. Note that the SPI-V2 block also offers the possibility to configure the sam-
pling edge for the I2S protocol.

Data format

The samples acquired by the SPI block in I2S or SPI mode can be stored into the memory
using either DMA or interrupt signaling.
The receive data register (SPIx_DR) provides contiguous bits from the microphone like
shown in the example hereafter for a 16-bit format:

M1_bxx represents the data bits from the digital microphone 1, and M1_bN is the older bit.

Note: The bit order of the received samples can be reversed if the interface is programmed in LSB
first instead of MSB first. Peripherals generally support various data size which are not
detailed here.

STM32

SPI
(in I2S mode)

Half-Duplex

Master Receiver

I2Sx_SD

I2Sx_CK

GND

L/R

CLK

DOUT

STM32

SPI
(in SPI mode)

Simplex

Master Receiver

SPIx_MISO

SPIx_SCK

Vdd
or

GND
L/R

CLK

DOUT

PDM data

PDM clock

PDM data

PDM clock

M1

M1

MSv48085V1PDM clock

Bit: 15 14 13 12 11 ... 0

Content: M1_bN M1_bN+1 M1_bN+2 M1_bN+3 M1_bN+4 ... M1_bN+15

Connecting PDM digital microphones to STM32 MCUs and MPUs AN5027

18/66 AN5027 Rev 2

2.1.2 Stereo configuration

Two digital microphones can be connected to the SPI block using a timer. The SPI block can
be configured either in SPI or in I2S mode.

In both cases, the SPI block is configured in master receiver mode. In this configuration, the
SPI peripheral operates at twice the microphone frequency in order to read the data pro-
vided by both microphones, on the falling edge of its clock. This allows the two microphones
to share a single data line.

The SPI block provides the clock to an embedded timer which divides the serial interface
clock (SPIx_SCK or I2Sx_CK) by 2. The divided clock is delivered to the digital microphone.
The audio samples are acquired by the I2S peripheral from the digital microphones data
output pins.

Figure 12. Connecting two digital microphone to SPI block in stereo configuration

Using the timer as clock generator

When the timer is used to generate the clock for the digital microphones, two points have to
be taken into account:

• The application must insure that the delay introduced by the clock division performed
by the timer still insures a margin in the setup time (TS) of the samples provided by the
microphones. For that purpose, the timer shall use a clock as fast as possible. The
maximum delay (TD) introduced by the timer between the input (TIMxCHIN) and the
output clock (TIMxCHOUT) is 5 clock cycles of the timer reference clock. The timers

MSv48086V1

STM32

SPI
(SPI or I2S mode)

Simplex or Half-Duplex

Master Receiver

SPIx_MOSI
(I2Sx_SD)

SPIx_SCK
(I2Sx_CK)

L/R

CLK

DOUT

TIMER

Slave

TIMxCHIN

TIMxCHOUT

Vdd

L/R

CLK

DOUT

PDM data

PDM clock x2

PDM data

PDM clock

GND
÷ 2

Under parenthesis is the name of IOs when the I2S protocol is selected

M1

M2

PDM clock

AN5027 Rev 2 19/66

AN5027 Connecting PDM digital microphones to STM32 MCUs and MPUs

64

generally use their APB clock or a multiple of their APB clock as reference. See
Figure 13.

• The application must insure that the peripheral providing the clock to TIMxCHIN input
and the timer used for the division, are working with the same reference clock. If this
rule is not respected, then from time to time the digital microphone receives a clock
having a longer or shorter period. This jitter may degrade the quality of the analog to
digital conversion of the microphone.

Figure 13. Stereo mode timing diagram

Data format

The samples acquired by the SPI block in I2S or SPI mode can be stored into the memory
using either DMA or interrupt signaling.

In this configuration, the data read from the microphones are interleaved bit per bit. The data
stored into the SPIx_DR register is interleaved as shown in the example hereafter for 16-bit
format:

M1_bxx represents the data bits from the digital microphone 1, and M1_bN is the older bit.
M2_bxx represents the data bits from the digital microphone 2, and M2_bN is the older bit.

The SPI-V1 and SPI-V2 offer several data formats, for example the bit order of the received
samples can be reversed if the interface is programmed in LSB first instead of MSB first, but
is it important to notice that bits from microphone 1 (M1) and bits from microphone 2 (M2)
are always interleaved.

A software de-interleaving module is needed to separate the signal from the two micro-
phones streams and to allow further processing like PDM-to-PCM conversion.

MSv48087V1

R

TIMxCHIN

TIMxCHOUT

Timer Delay (TD)

L R L R LPDM Data

Setup time (TS)

Hold time (TH)

Data right

Bit: 15 14 13 12 11 ... 0

Content: M1_bN M2_bN M1_bN+1 M2_bN+1 M1_bN+2 ... M2_bN+7

Connecting PDM digital microphones to STM32 MCUs and MPUs AN5027

20/66 AN5027 Rev 2

2.2 Serial audio interface (SAI)

The SAI integrated inside STM32 MCUs and MPUs provides an interface allowing the
microcontroller to communicate with external audio devices such as amplifiers, micro-
phones, speakers, or audio processors. The SAI is composed of two independent sub-
blocks that can operate synchronously or not. Each sub-block features its own audio clock
generator.

Some SAI also offer a dedicated PDM interface that can support up to 8 digital micro-
phones.

2.2.1 Using a single sub-block

Mono configuration

The digital microphone is connected to one of the sub-blocks of the serial audio interface
(SAI) peripheral in mono configuration. The SAI sub-block is configured in master receive
mode. In this configuration, the SAI sub-block provides the clock to the digital microphone.
The audio samples are acquired by the SAI sub-block from the digital microphone data out-
put (DOUT) pin through the Serial Data (SD) pin.

Figure 14. Connecting one digital microphone to SAI in mono configuration

The L/R channel selection (LR) pin of the microphone can be connected either to Vdd or to
GND. The microphone outputs data on the rising or falling edges of the incoming clock sig-
nal depending on the selected channel. The sampling edge of the SAI clock shall be config-
ured accordingly.

Note: The other SAI sub-block is completely independent and can be used for another purpose:
for example it can be connected to an external audio codec.

Data format

The samples acquired by the SAI sub-block can be stored into the memory using either
DMA or interrupt signaling.

MSv48088V1

STM32

SAI_x (1)

Master Receiver

SAI_SD_x

SAI_SCK_x

Vdd
or

GND
L/R

CLK

DOUT
PDM data

PDM clock

SAI Block

(1) x can be either A or BPDM clock

AN5027 Rev 2 21/66

AN5027 Connecting PDM digital microphones to STM32 MCUs and MPUs

64

The receive data register (SAI_ADR, SAI_BDR) provides contiguous bits from the micro-
phone like shown hereafter:

M1_bxx represents the data bits from the digital microphone 1, and M1_bN is the older bit
position inside SAI_ADR/BDR registers. For example if DS[2:0] is set to ‘010’ (8 bits), then
‘k’ is equal to 7.

The size of data stored into the SAI_ADR/BDR registers depends on the programming of
the data size (DS[2:0]), in addition SLOTSZ[1:0] must be forced to 0.

Note that the bit order of the received samples can be reversed if the interface is pro-
grammed in LSB first instead of MSB first.

Note: The data inside SAI_ADR/BDR registers are always right aligned.

Stereo configuration

Two digital microphones can be connected to a single SAI sub-block using an internal timer.
The SAI sub-block is configured in master receiver mode. In this configuration, the SAI sub-
block operates at twice the microphone frequency in order to read the data provided by both
microphones, on the same edge of its clock. This allows the two microphones to share a sin-
gle data line (Refer to Figure 15).

The SAI sub-block provides the clock (SAI_SCK_x) to an embedded timer which performs a
division by 2. The divided clock is delivered to the digital microphone.

Note: The other SAI sub-block is completely independent and can be used for another purpose:
for example it can be connected to an external audio codec.

Timing diagram shown in Figure 13 is also valid for this case. Refer also to section Using
the timer as clock generator for recommendations concerning the use of the timer.

Bit: k k-1 k-2 k-3 k-4 ... 0

Content: M1_bN M1_bN+1 M1_bN+2 M1_bN+3 M1_bN+4 ... M1_bN+k

Connecting PDM digital microphones to STM32 MCUs and MPUs AN5027

22/66 AN5027 Rev 2

Figure 15. Connecting two digital microphones to SAI in stereo configuration
using a SAI sub-block and a timer

Data format

The samples acquired by the SAI sub-block can be stored into the memory using either
DMA or interrupt signaling.

In this configuration, the data read from the microphones are interleaved bit per bit. The data
stored into the SAI_ADR/BD register is interleaved as shown in the example hereafter:

M1_bxx represents the data bits from the digital microphone 1, and M1_bN is the older bit.
M2_bxx represents data bits from the digital microphone 2, and M2_bN is the older bit.
‘k’ is the bit position inside SAI_ADR/BDR registers, for example if DS[2:0] is set to ‘100’
(16 bits), then ‘k’ is equal to 15.

The size of data stored into the SAI_ADR/BDR depends on the programming of the data
size (DS[2:0]), in addition SLOTSZ[1:0] must be forced to 0.

Note: The bit order of the received samples can be reversed if the interface is programmed in LSB
first instead of MSB first, but is it important to notice that bits from microphone 1 (M1) and
bits from microphone 2 (M2) are always interleaved.

The data inside SAI_ADR/BDR registers are always right aligned.

MSv48089V1

STM32

SAI_x (1)

Master Receiver

L/R

CLK

DOUT

TIMER

Slave

TIMxCHIN

TIMxCHOUT

Vdd

L/R

CLK

DOUT

PDM data

PDM clock x2

PDM data

PDM clock

GND
÷ 2

M1

M2

SAI_SD_x

SAI_SCK_x

(1) x can be either A or B

SAI Block

PDM clock

Bit: k k-1 k-2 k-3 ... 1 0

Content: M1_bN M2_bN M1_bN+1 M2_bN+1 M1_bN+(K-1)/2 M2_bN+(K-1)/2

AN5027 Rev 2 23/66

AN5027 Connecting PDM digital microphones to STM32 MCUs and MPUs

64

A software de-interleaving module is needed to separate the signal from the two micro-
phones streams to allow further processing like PDM-to-PCM conversion.

2.2.2 Using two synchronous SAI sub-blocks

Two digital microphones can be connected to the SAI peripheral without using an embed-
ded timer by synchronizing two SAI sub-blocks. Each microphone is connected to a SAI
sub-block. One of the SAI sub-block is configured in Master-receive mode while the other
sub-block is configured in Synchronous-slave receive mode. In this configuration, the SAI
sub-block configured in Master mode delivers the clock to the digital microphones and to the
other SAI sub-block. The two SAI sub-blocks read data synchronously from the micro-
phones.

Figure 16. Connecting two digital microphone to SAI in stereo configuration
using two synchronous SAI sub-blocks

Since the two microphones are not sharing one data line, the L/R channel selection (LR) pin
of the microphones can be connected either to Vdd or to GND. The microphones output
data on the rising or falling edges of the incoming clock signal depending on the selected
channel. The clock polarity of each SAI sub-blocks should be configured accordingly.

Data format

The samples acquired by each SAI sub-block can be stored into the memory using either
DMA or interrupt signaling. Up to 2 DMA channels are requested in that case.

For each SAI sub-block, the data format is similar to what is described for the SAI mono
configuration.

MSv48090V1

STM32

Master Receiver

SAI_SD_x

SAI_SCK_x

L/R

CLK

DOUT

PDM data

PDM clock

SAI_y

SAI Block

SAI_SD_y
L/RCLK

DOUT

PDM data

SAI_FS_x

Vdd

GND

sai_fs_x_out

sai_fs_y_in

sai_sck_y_in

Synchronous Slave receiver

SAI_x

PDM clock

Connecting PDM digital microphones to STM32 MCUs and MPUs AN5027

24/66 AN5027 Rev 2

2.2.3 Using PDM interface

The PDM interface is provided in order to support digital microphones. Up to 4 digital micro-
phone pairs can be connected in parallel. The PDM interface also offers delay lines in order
to perform micro-delays in each incoming bitstream, and thus making the beamforming
application simpler. The depth of each delay cell is 8 bitstream samples.

The PDM function is intended to be used in conjunction with SAI_A sub-block, configured in
Time Division Multiplexing (TDM) master mode. It cannot be used with SAI_B sub-block.

To reduce the memory footprint, the user can select the amount of microphones that the
application needs. It is possible to select 2, 4, 6 or 8 microphones.

For example, if the application is using 3 microphones, the user has to select 4. In this case,
the PDM data is acquired through SAI_D1 and SAI_D2. SAI_D1 receives the data from the
first couple of microphones while SAI_D2 receives data from the third microphone.

Table 5 shows the recommended IO lines versus the number digital microphones to be con-
nected.

The microphones can be clocked from the same SAI_CKx (x=0...3) or separately from dif-
ferent SAI_CK giving the user the flexibility to enable or disable the audio acquisition from
particular microphones depending on the application.

The SAI operates at the number of microphones selected (2, 4, 6 or 8) times the micro-
phone frequency to be able to read data from all the microphones in the application.

Table 5. Recommended IO lines versus the number digital microphones
to be connected

Number of
Microphones

Recommended data IO lines
Recommended
clock IO lines

1 or 2 SAI_D1

SAI_CK1,2,3 or 4
3 or 4 SAI_D1 and SAI_D2

5 or 6 SAI_D1 and SAI_D2 and SAI_D3

7 pr 8 SAI_D1 and SAI_D2 and SAI_D3 and SAI_D4

AN5027 Rev 2 25/66

AN5027 Connecting PDM digital microphones to STM32 MCUs and MPUs

64

Figure 17. PDM interface capability on interfacing up to four microphone pairs

MSv48091V1

TDM Master

SAI_D1SAI Block M2

M3

M4

SAI_D2

SAI_CK1

SAI_CK2

SAI_D4

M8

M7

M6

M5

SAI_D3

SAI_CK4

SAI_CK3
P

D
M

_I
F

TDM
Link

One clock output per microphone pair

SAI_A
TDM Master

SAI_D1SAI Block

M1

M2

M3

M4

SAI_D2

SAI_CKx

SAI_D4

M8

M7

M6

M5

SAI_D3

TDM
Link

Note: x can be 1,2,3 or 4

Common clock for all microphones

SAI_A
P

D
M

_I
F

STM32

STM32

M1

PDM clock

Connecting PDM digital microphones to STM32 MCUs and MPUs AN5027

26/66 AN5027 Rev 2

The PDM Interface of the SAI offers an optimal connection to the digital microphone, saving
as much IOs as possible. In addition the PDM interfaces can separate the data of each
microphone byte-wise, avoiding the de-interleaving operation.

Data format

The samples acquired by the SAI_A sub-block can be stored into the memory using a single
DMA channel or interrupt signaling.

The receive data register (SAI_ADR) provides 8 successive bits for each microphone as
shown hereafter:

Figure 18. Data format when using the SAI PDM interface with a slot size of 32 bits,
and 8 microphones

The size of data stored into the SAI_ADR depends on the programming of several SAI
parameters, please refer to the SAI user specification on order to get more information
about the data format, when the PDM interface is used.

Note that if the slot size is set to 8 bits, then the SAI_ADR contains only on byte of data from
one microphone. The SAI_ADR must be read 8 times to get one byte from the 8
microphones.

Figure 19. Data format when using the SAI PDM interface with a slot size of 8 bits,
and 8 microphones

MSv48092V1

M5 M6 M7 M8

bN bN+1 bN+2 bN+3 bN+4 bN+5 bN+6 bN+7

M1 M2 M3 M4SAI_ADR
31 24 23 16 15 8 7 0

MSv48093V1

zeros M8
zeros M7
zeros ...
zeros M2

bN bN+1 bN+2 bN+3 bN+4 bN+5 bN+6 bN+7

zeros M1

SAI_ADR

31 24 23 16 15 8 7 0

AN5027 Rev 2 27/66

AN5027 Connecting PDM digital microphones to STM32 MCUs and MPUs

64

2.3 Digital filter for sigma delta modulators (DFSDM)

The DFSDM is a digital peripheral inside STM32 MCUs and MPUs. It behaves like a
standard ADC with a scalable speed/resolution and an external analog front-end.

Digital MEMS microphones providing a PDM output data format can be directly connected
to the DFSDM. The DFSDM provides filtered and decimated samples. Each filter has its
own DMA channel as a consequence the samples of each microphone are separated. This
allows the application to avoid heavy filtering and the de-interleaving operations. Finally
some DFSDM blocks offer delay lines in order to perform micro-delays in each incoming
bitstream, and thus making the beamforming application simpler. The depth of each delay
line is at least equal to the decimation ratio.

It is possible to interface several digital microphones with a single DFSDM. It depends on
the amount of filters integrated and the amount of interfaces.

The DFSDM features a clock output signal (DFSDM_CKOUT) to drive the digital
microphones. The clock output has an adjustable division factor. The DFSDM_CKOUT can
be the output on different IOs giving the user the flexibility to enable or disable the audio
acquisition from particular microphones depending on the application. The configuration
shown in Figure 20: DFSDM capability to interface up to 4 digital microphones is usually
used in low power applications: the digital microphone M1 can work while the others
switched in low-power mode as they are not clocked. It is also possible to power-off M3 and
M4, to save more energy.

When all microphones need to be activated, then the same clock is provided to all
microphones via two different PADs.

Figure 20. DFSDM capability to interface up to 4 digital microphones

MSv48094V1

STM32

Filter 0
DFSDM_DATIN1

DFSDM

M1

M2

M4

M3

Channel 0

Filter 1 Channel 1

Filter 2 Channel 2

Filter 3 Channel 3

Control Unit

DFSDM_DATIN3

DFSDM_CKOUT

DFSDM_CKOUT

PDM clock

Connecting PDM digital microphones to STM32 MCUs and MPUs AN5027

28/66 AN5027 Rev 2

2.3.1 Stereo configuration

Two digital microphones are connected to the DFSDM in stereo configuration. The DFSDM
must enable two consecutive channels driven by an internal clock. The DFSDM peripheral
provides an external clock (DFSDM_CKOUT) to drive the digital microphones. In this
configuration, the DFSDM is programmed in order to allow the channels x and x-1 to receive
the data from DFSDM_DATINx pin. Each channel reads data on a different clock edge
allowing the two microphones to share a single data line. Each channel then redirects the
acquired data to a different DFSDM filters to be processed.

Figure 21. Stereo configuration

Data format

The samples acquired by each digital filter can be stored into the memory using a dedicated
DMA channel or interrupt signaling. There is no interleaving, each filter provides the
converted samples of one microphone. The amount of requested DMA channels is equal to
the amount of the digital filters activated.

2.4 Clocking considerations

2.4.1 The digital microphone clock

The clock provided to the digital microphone has several functions:

• When the clock is absent or at very low frequency (refer to product datasheet), then the
digital microphones switch into low-power mode.

• When the clock frequency is low (usually between 400 and 800 kHz) the microphone is
working in low-power mode. It means that there is a small degradation of its
performance in order to reduce as much as possible the power consumption. This

MSv48095V1

STM32

DFSDM

Filter y Channel x

Filter z Channel x-1

Control Unit

DFSDM_DATIN3

DFSDM_CKOUT

L/R

CLK

DOUT

Vdd

L/R

CLK

DOUT

PDM data

PDM clock

GND

M1

M2

1. x can be from 1 to n, where n is the number of channels in the DFSDM.
2. y can be from 1 to m, where m is the number of filters in the DFSDM. PDM clock

AN5027 Rev 2 29/66

AN5027 Connecting PDM digital microphones to STM32 MCUs and MPUs

64

feature is not available in all microphones. The clock shall be as clean as possible, with
low-jitter.

• Finally, when the clock frequency is higher (about 1 to 4.8 MHz), the microphone is
working in its nominal mode. The clock shall be as clean as possible, with low-jitter.
Note that the accepted frequency range is dependent of the microphone, refer to the
datasheet of the product for details.

Note as well that when a digital microphone just exits from low-power mode because its
clock becomes active or in the detected frequency range, it takes several milliseconds
before providing samples with the expected quality.

Table 6 shows some applications examples and the associated microphone clock
frequency.

2.4.2 The peripheral clocks

In order to select an implementation, the application shall also consider the clocking
possibilities that the microcontroller offers to the SPI, SAI or DFSDM. It is also important to
check the capabilities of the clock generator embedded into the SPI, SAI and DFSDM.

Generally the peripheral audio blocks have two clock inputs:

• A clock used for the register interface control (like APB clock)

• A clock used for the timing generation of the serial interface, named kernel clock.

According to the peripheral and protocol selected, the peripheral clock generator uses the
bus interface or a dedicated reference clock. For example the SPI-V1 uses the APB clock
as reference clock if the SPI protocol is used, while the I2S protocol is using an I2S clock.

Controlling the frequency of the APB clock is generally less flexible than using a dedicated
clock. One of the reason is that the APB clock impacts all the peripherals connected to this
APB bus. However, in the case where a timer is used to support a stereo microphone
configuration, using the APB (like the same clock than the timer) solves one of the issue
listed in the Using the timer as clock generator.

Some microcontrollers also offer the possibility to provide a copy of the APB clock as kernel
clock.

Table 6. Applications examples and the associated microphone clock frequency

Use-cases Clock frequency provided to the digital microphone

Sound capture Between 400 and 800 kHz

Speech application Between 1 and 1.5 MHz

High-quality audio application Between 2.4 and 4.8 MHz

Connecting PDM digital microphones to STM32 MCUs and MPUs AN5027

30/66 AN5027 Rev 2

Figure 22. Bus and kernel clock topology for SPI

Other peripherals (SPI-V2, SAI and DFSDM) always offer a dedicated kernel clock for the
clock generation. This option is more flexible and makes the wanted clock frequency
independent from the bus interface frequency.

Figure 23. Bus and kernel clock topology for SAI and DFSDM

Note: The DFSDM offers the possibility to select either an independent peripheral clock (audio
clock) or to select the DFSDM clock which is synchronous of the APB clock.

MSv48096V1

SPI-V1

SPI sub-block

I2S sub-block

APB clock

I2S clock

Reg ITF

Clock Gen

Clock Gen

Reg ITF

I2S_CK

SPI_SCK

SPI-V2

SPI or I2S
sub-block

APB clock

SPI clock
Clock Gen

Reg ITF

I2S_SCK

SPI_SCK

MSv48097V1

SAI

SAI_A sub-block

APB clock

SAI clock
Clock Gen

Reg ITF

SAI_SCK_A

SAI_B sub-block

APB clock

SAI clock
Clock Gen

Reg ITF

SAI_SCK_B

DFSDM

APB clock

DFSDM clock

Clock Gen

Reg ITF

DFSDM_CKOUTAudio clock

Processing

AN5027 Rev 2 31/66

AN5027 Connecting PDM digital microphones to STM32 MCUs and MPUs

64

2.5 GPIOs number considerations

This section helps the user to choose the most suited STM32 peripheral (SPI2S, SAI,
DFSDM) to interface digital microphones in a particular application according to GPIOs
number.

Table 7, Table 8 and Table 9 shows the hardware used to connect respectively one, two and
four digital microphones to the different audio and serial interfaces.

• The column Number of GPIOs indicates the number of GPIO necessary to connect
digital microphones to an audio interface.

• The column Timer indicates whether the audio interface needs a timer to deliver the
appropriate clock to the microphones.

Table 7. Hardware used to connect one digital microphone

Interface Number of GPIOs Timer

SPI 2 No

I2S 2 No

SAI 2 No

DFSDM 2 No

Table 8. Hardware used to connect two digital microphones

Interface Number of GPIOs Timer

SPI 4 Yes

I2S 4 Yes

SAI 4 Yes

SAI (two synchronous sub-blocks) 4 No

SAI with PDM interface 2 No

DFSDM 2 No

Table 9. Hardware used to connect four digital microphones

Interface Number of GPIOs Timer

SAI (two synchronous sub-blocks) 6 Yes

SAI with PDM interface 3 No

DFSDM 3 No

Digital signal processing AN5027

32/66 AN5027 Rev 2

3 Digital signal processing

This section presents two ways to convert PDM data into PCM data: the first is a software
solution which is the PDM audio software decoding library and the second is hardware
solution using the DFSDM peripheral filters.

3.1 PDM audio software decoding library

3.1.1 Overview

PDM audio software decoding library is an optimized software implementation for PDM
signal decoding and audio signal reconstruction when connecting digital MEMS
microphones with an STM32 MCU or MPU. This library implements several filters for the 1-
bit PDM high frequency signal output from a digital microphone and transforms it into a 16-
bit PCM at a proper audio frequency.

3.1.2 Digital data flow

The digital MEMS microphone outputs a PDM signal, which is a high frequency
(1 to 3.25 MHz) stream of 1-bit digital samples. The PDM data is acquired by a serial
interface embedded in the STM32 device. This data is transferred through DMA (thus
reducing the software overhead) to a system RAM buffer to be processed. After the
conversion, the PCM raw data can be handled depending on the application implementation
(stored as wave/compressed data in a mass storage media, transferred to an external audio
codec DAC).

AN5027 Rev 2 33/66

AN5027 Digital signal processing

64

Figure 24. Digital data acquisition and processing (block diagram)

3.1.3 Digital signal processing

The PDM audio software decoding library offers a two steps digital signal processing: PDM
digital filtering and decimation and digital signal conditioning.

Figure 25. Digital signal processing

On the first step, the PDM signal from the microphone is filtered and decimated in order to
obtain a sound signal at the required frequency and resolution.
On the second step, the digital audio signal resulting from the previous filter pipeline is fur-
ther processed for proper signal conditioning implementing a low pass filter and a high pass
filter. Both these filters can be enabled/disabled and configured (cut-off frequencies) by
using the filter initialization function.

Note: In stereo configuration, if two microphones are sharing one data line and the PDM data is
interleaved bit per bit, a software de-interleaving step is needed to separate the signal from
the two microphones before proceeding to the PDM to PCM conversion.

SPI/I2S/SAI

STM32

CPURAM

Memory/
Peripheral

DMA PDM Microphone

Signal Processing

MS47169V1

PDM Data
PCM Data
Clock Signal

Digital signal
conditionning

PCM outPDM digital filtering
and decimation

MS47170V1

PDM in

Digital signal processing AN5027

34/66 AN5027 Rev 2

3.2 DFSDM filters for digital signal processing

3.2.1 Digital data flow: acquisition and processing

The digital MEMS microphone outputs a PDM signal, which is a high frequency (1 to 3.25
MHz) stream of 1-bit digital samples. The data is acquired by the DFSDM serial transceiver
that provides connection to the external Sigma-Delta modulator of the digital microphone.
The digital filters perform CPU-free filtering that averages the 1-bit input data stream from
the SD modulator into a higher resolution and a lower sample rate. This data is transferred
through DMA (thus reducing the software overhead) to a system RAM buffer to be further fil-
tered. After that, the PCM raw data can be handled depending on the application implemen-
tation (stored as wave/compressed data in a mass storage media, transferred to an external
audio codec DAC).

Figure 26. Digital data acquisition and processing using DFSDM (block diagram)

DFSDM PDM
Microphone

STM32

CPURAM

Memory/
Peripheral

DMA

Additionnal Filtering

MS47171V1

PDM Data
PCM Data
Clock Signal

AN5027 Rev 2 35/66

AN5027 Examples of configuration based on STM32CubeMX

64

4 Examples of configuration based on STM32CubeMX

The following section guides the user through the different steps needed to create a basic
audio application which acquires PDM data from digital microphones in mono or stereo
modes then convert it into PCM data.

The main step consists in selecting the right hardware configuration and generate the C
initialization code with the STM32CubeMX tool. In a second step, add the appropriate user
code to the generated project.

Finally, user could refer to STM32Cube_FW packages audio examples and to
"X-CUBE-MEMSMIC1” package to complete the needed user code for each example.

This section assumes that:

• The user wanted to get a PCM stream of 16 or 48 kHz

• The digital microphones receive a clock 64 times higher than the PCM stream
frequency (oversampling by 64).

4.1 Example 1: Interfacing digital microphones in mono or
stereo mode with I2S, SPI or a single SAI sub-block

This example is based on the NUCLEO-F413ZH board and using external digital
microphones that are connected to either I2S, SPI or SAI.

For 16 KHz sampling rate the bitclock generated by the interface must be 1.024 MHz for
mono mode and 2.048MHz for stereo mode.

For 48 KHz sampling rate the bitclock generated by the interface must be 3.072 MHz for
mono mode and 6.144MHz for stereo mode.

4.1.1 Hardware configuration using STM32CubeMX

I2S

GPIO and Pin configuration

From the listed hardware in the Pinout tab, choose the I2S2 peripheral and configure it in
Half-duplex master mode.

Figure 27 shows how to enable the I2S2 in Half-duplex master mode.

The enabled pins, I2S2_SD, I2S2_CK and I2S2_WS, are highlighted in green once the I2S
peripheral GPIOs are correctly configured.

Examples of configuration based on STM32CubeMX AN5027

36/66 AN5027 Rev 2

Figure 27. I2S GPIO pin configuration

Note: In this example the I2S2_WS pin are not used. This pin can be released and brought back
as a GPIO by applying a minor modification in code of the MSP Initialization file
(stm32f4xx_hal_msp.c) after generating the project.

Clock configuration:

This section describes the different clock configuration for I2S in mono and stereo modes for
16 kHz and 48 kHz streams. HSE = 8 MHz is used as source clock.

In stereo mode, timer and I2S must use a clock coming from the same reference, for this
reason the PLLR selected as clock source for I2S.

Note: The accuracy is the error between expected audio frequency and the real one.

Figure 28 shows an example of I2S clock configuration for mono mode.

Table 10. I2S2 clock configuration and accuracy

Target
Audio

Frequency
(kHz)

Microphone
mode

I2S_APB1
Clock
Mux

source

DivM PLLN DivR DivP
I2S clock
(MHz)(1)

Accuracy
(ppm)

16

Mono
PLLI2SR 5 192 2 - 153.60 0

PLLI2SR 5 192 5 - 61.44 0

Stereo
(with timer)

PLLR 7 344 6 4 65.52 -186

48

Mono
PLLI2SR 5 192 2 - 153.60 0

PLLI2SR 5 192 5 - 61.44 0

Stereo
(with timer)

PLLR 7 344 4 4 98.29 -186

1. In order to work properly, the I2S clock must be higher than its APB clock.

AN5027 Rev 2 37/66

AN5027 Examples of configuration based on STM32CubeMX

64

Figure 28. I2S2 clock configuration

I2S configuration

Select the configuration tab then click on the I2S2 button as shown in Figure 29.

Figure 29. I2S configuration

a) I2S parameter settings:

In the I2S configuration window, select the parameter settings tab and then configure the
parameters.

The I2S is configured according to the following conditions:

• Selected Audio Frequency = AUDIO_SAMPLING_FREQUENCY

• Communication Standard = MSB First (Left Justified): The I2S reads data on the falling
edge of the clock. In mono configuration the LR pin of the microphone must be
connected to GND.

Figure 30 shows an example of I2S configuration for an Audio Sampling Frequency =
16 kHz in Mono mode.

Examples of configuration based on STM32CubeMX AN5027

38/66 AN5027 Rev 2

Figure 30. I2S parameter settings

b) I2S DMA configuration

In this example the DMA handles the PDM data transfer from the I2S to the Memory.

In the I2S configuration window, select the DMA Settings Tab and add a DMA request.
Figure 31 shows how to enable the DMA.

Figure 31. I2S DMA settings

Click on the recently created DMA request and refer to the DMA request settings section to
complete the DMA configuration.

SPI

GPIO and pin configuration

From the listed hardware in the Pinout tab, choose the SPI1 peripheral and configure it in
Receive Only Master mode.

Figure 32 shows how to enable SPI1 in Receive Only Master mode. The enabled pins,
SPI1_SCK and SPI1_MISO, are highlighted in green when the SPI peripheral GPIOs are
correctly configured.

AN5027 Rev 2 39/66

AN5027 Examples of configuration based on STM32CubeMX

64

Figure 32. SPI GPIO and pin configuration

SPI clock configuration

This section describes the different clock configuration for SPI in mono and stereo modes
for 16 KHz and 48 KHz streams. HSE = 8MHz is used as source clock.

The APB2 clock is used as reference clock for the SPI.

Figure 33 shows an example of SPI clock configuration for mono mode.

Figure 33. SPI clock configuration

Table 11. SPI clock configuration and accuracy

Target
Audio

Frequency
(kHz)

Microphone
mode

DivM PLLN DivR DivP
SPI clock

(MHz)
Accuracy

(ppm)

16

Mono 7 344 - 6 65.52 -186

Stereo
(with timer)

7 344 - 6 65.52 -186

48

Mono 7 344 - 4 98.29 -186

Stereo
(with timer)

7 344 - 4 98.29 -186

Examples of configuration based on STM32CubeMX AN5027

40/66 AN5027 Rev 2

SPI configuration

Select the configuration tab then click on the SPI button as shown in Figure 34.

Figure 34. SPI configuration

a) SPI parameter settings

In the SPI configuration window, select the parameter Settings and tab then configure the
parameters.

In mono mode the Clock Polarity and the Clock Phase are chosen according to the state of
L/R pin of the microphone

Figure 35 shows an example of SPI configuration with an Audio Frequency = 16 kHz in
Mono mode.

Figure 35. SPI parameter setting

AN5027 Rev 2 41/66

AN5027 Examples of configuration based on STM32CubeMX

64

b) SPI DMA settings

In this example the DMA handles the PDM data transfer from the SPI to the Memory.

Open the SPI configuration window, select the DMA Settings Tab and add a DMA request.
Figure 36 shows how to enable the DMA.

Figure 36. SPI DMA settings

Click on the DMA request and refer to the DMA request settings section to complete the
DMA configuration.

SAI

GPIO and pin configuration

From the listed hardware in the Pinout tab, choose the SAI1 peripheral and enable its sub-
block A in Master mode.

Figure 37 shows how to enable the sub-block A of the SAI in Master mode. The enabled
pins, SAI1_SD_A, SAI1_SCK_A and SAI1_FS_A, is highlighted in green once the SAI
interface GPIOs are correctly configured.

Figure 37. SAI GPIO and pin configuration

Note: In this example the SAI1FS_A pin cannot be used. This pin can be released and brought
back as a GPIO by applying a minor modification in the MSP Initialization file code
(stm32f4xx_hal_msp.c), after generating the project.

Clock configuration

In the Clock Configuration tab set the SAI clock.

Table 12 provides the audio sampling frequency accuracy values for the clock configuration.

The PLLI2SR is used as source clock.

Examples of configuration based on STM32CubeMX AN5027

42/66 AN5027 Rev 2

Figure 38 shows an example of SAI clock configuration.

Figure 38. SAI clock configuration at 16 kHz for mono mode

Table 12. Clock configuration and accuracy

Target Audio
Frequency

(kHz)

Microphone
mode

DivM PLLN DivR
SAI clock

(MHz)
Accuracy

(ppm)

16

Mono 5 128 5 40.96 0

Stereo
(with timer)

5 128 5 40.96 0

48

Mono 5 192 25 12.29 0

Stereo
(with timer)

5 192 25 12.29 0

AN5027 Rev 2 43/66

AN5027 Examples of configuration based on STM32CubeMX

64

SAI configuration

Select the Configuration tab then click on the SAI1 button as shown in Figure 39.

Figure 39. SAI configuration

a) SAI parameter settings

In the SAI configuration window, select the parameter Settings tab and then configure the
parameters. The enabled SAI sub-block is configured according to the following conditions:

• Data Size = 16 Bits

• Output Mode = Stereo (This parameter doesn’t change whether one or two
microphones are connected to SAI)

• Companding Mode = No companding mode

• Frame Synchro definition = Channel Identification

• Number of Slots = 4

• Slot Active = All

• Frame Synchro Active Length = Frame Length / 2

• Master Clock Divider = Enabled (other possible solution with Master Clock Divider
disabled)

• Audio Frequency = Audio Sampling Frequency

• In mono mode the Clock Strobing is chosen according to the state of L/R pin of the
microphone.

Figure 40 shows an example of SAI configuration for an Audio Frequency = 16 kHz in Mono
mode.

Examples of configuration based on STM32CubeMX AN5027

44/66 AN5027 Rev 2

Figure 40. SAI parameter setting

AN5027 Rev 2 45/66

AN5027 Examples of configuration based on STM32CubeMX

64

b) SAI DMA settings

In this example the DMA handles the PDM data transfer from the SAI to the Memory.

In the SAI configuration window, select the DMA Settings Tab and add a DMA request.
Figure 41 shows how to enable the DMA.

Figure 41. SAI DMA settings

Click on the recently created DMA request and refer to the DMA request settings section to
complete the DMA configuration.

DMA request settings

Figure 39 shows the DMA configuration request for each audio interface.

Figure 42. DMA request settings

Timer

In stereo mode, a timer is used to divide the clock frequency generated by the audio
interface and deliver the divided clock to the digital microphones.

GPIO and pin configuration

In the Pinout tab, choose Timer 3 from the listed hardware and enable the slave mode by
selecting External Clock Mode 1. Select TI1FP1 as a Trigger Source and enable Channel 2
in PWM Generation CH2.

Figure 39 shows how to enable TIM3. The used pins, TIM3_CH1 and TIM3_CH2, is
highlighted in green once the TIM3 GPIOs are correctly configured.

Examples of configuration based on STM32CubeMX AN5027

46/66 AN5027 Rev 2

Figure 43. TIM GPIO and pin configuration

Timer configuration

Select the Configuration tab then click on the TIM3 button as shown in Figure 44.

Figure 44. TIM configuration

AN5027 Rev 2 47/66

AN5027 Examples of configuration based on STM32CubeMX

64

TIM parameter settings

In the TIM3 configuration window, select the Parameter Settings tab.

Figure 44 shows how to configure TIM3 in order to divide the Trigger Source clock
frequency by 2.

Figure 45. TIM parameter settings

4.1.2 Adding PDM software decoding library middleware files

Choose the favorite toolchain, generate the project with STM32CubeMX and open the
generated project.

For the STM32F413xx MCU, the PDM audio software decoding library includes one header
file pdm_filter.h and binary/object codes for the following platforms:

• libPDMFilter_CM4F_IAR.a: for IAR compiler

• libPDMFilter_CM4F _Keil.lib: for ARM compiler

• libPDMFilter_CM4F _GCC.a: for GNU compiler

This Library is provided in the “STM32Cube_FW_F4” firmware package (V1.16 and later)
under the following path “Middlewares\ST\STM32_Audio\Addons\PDM”

Make sure to add header file pdm_filter.h path to the project Include Paths and the
appropriate binary/object file to the project source files.

Examples of configuration based on STM32CubeMX AN5027

48/66 AN5027 Rev 2

4.2 Example 2: Interfacing digital microphones in stereo mode
with SAI using two synchronous sub-blocks

This example is based on the NUCLEO-F413ZH board and using two external digital
microphones that are connected each one to an SAI sub-block. It is applicable to the
hardware connection described in the Section 2.2.2: Using two synchronous SAI sub-blocks

4.2.1 SAI configuration using STM32CubeMX

GPIO and Pin configuration

After creating the STM32CubeMX project, choose the SAI1 peripherals from the listed
hardware in the Pinout tab, configure its sub-block A in Master mode and the sub-block B in
Synchronous Slave mode.

Figure 46 shows how to enable the sub-block A of SAI1 in Master mode and the sub-block B
in Synchronous Slave mode. In this case, the bit clock and the frame synchronization
signals are shared between the two sub-blocks to reduce the number of external pins used
for the communication.

The enabled pins, SAI1_SD_A, SAI1_SD_B, SAI1_SCK_A and SAI1_FS_A, are highlighted
in green once the SAI peripheral GPIOs are correctly configured.

Figure 46. SAI GPIO and pin configuration

AN5027 Rev 2 49/66

AN5027 Examples of configuration based on STM32CubeMX

64

Clock configuration using STM32CubeMx

This section describes the clock configuration for SAI using two synchronous sub-blocks for
16 KHz and 48 KHz streams.

For 16KHz sampling rate the bitclock generated by SAI should be 1.024MHz .

For 48KHz sampling rate the bitclock generated by SAI should be 3.072MHz .

The PLLI2SR is used as source clock.To get the accurate bitclock frequency, the user must
configure the adequate MCKIDV.

Figure 47 provides the SAI clock configuration used in this example.

Figure 47. SAI clock configuration

Table 13. SAI clock configuration and accuracy

Target
Audio Freq

(kHz)
DivM PLLN DivR

SAI clock
(MHz)

Accuracy
(ppm)

16 5 128 5 40.96 0

48 5 192 25 12.29 0

Examples of configuration based on STM32CubeMX AN5027

50/66 AN5027 Rev 2

Parameter settings

In the SAI configuration window, select the parameter Settings tab then configure the
parameters. The SAI sub-blocks should be configured according to the following conditions:

• Data Size = 16 Bits

• Frame Length = 4 x Data Size

• Output Mode = Stereo

• Companding Mode = No companding mode

• Frame Synchro definition = Channel Identification

• Number of Slots = 4

• Slot Active = All

• Frame Synchro Active Length = Frame Length / 2

• Master Clock Divider = Enabled

• Audio Frequency = AUDIO_SAMPLING_FREQUENCY

The Clock Strobing is chosen according to the state of L/R pin of the microphone connected
to every sub-block.

Figure 48 and Figure 49 show respectively how to configure SAIA and SAIB for an audio
sampling frequency = 16 kHz.

AN5027 Rev 2 51/66

AN5027 Examples of configuration based on STM32CubeMX

64

Figure 48. SAI parameter settings

Examples of configuration based on STM32CubeMX AN5027

52/66 AN5027 Rev 2

Figure 49. SAIB parameter settings

SAI DMA settings

In this example the DMA handles the PDM data transfer from each SAI sub-block to the
Memory.

In the SAI configuration window, select the DMA Settings Tab and add a DMA request for
each sub-block. Figure 50 shows how to enable the DMA.

Figure 50. SAI DMA settings

Click on the recently created DMA requests and refer to the DMA request settings section to
complete the DMA configuration.

AN5027 Rev 2 53/66

AN5027 Examples of configuration based on STM32CubeMX

64

4.2.2 Adding PDM software decoding library middleware files

Refer to Section 4.1.2: Adding PDM software decoding library middleware files.

4.3 Example 3: Interfacing digital microphones in stereo mode
with SAI using PDM interface

This example is based on the NUCLEO-H743ZI board using two external digital
microphones that are connected in Stereo mode to SAI through the PDM interface.

4.3.1 SAI configuration using STM32CubeMX

GPIO and Pin configuration

After creating the STM32CubeMX project, choose the SAI1 peripherals from the listed
hardware in the Pinout tab and configure it in Pulse Density Modulation mode. Select the
number of microphones as well as the output clock.

Figure 51 shows how to enable the sub-block A of SAI1 in Pulse Density Modulation mode,
supporting of two microphones and having CK1 as an output clock. The enabled pins,
SAI1_CK1 and SAI1_D1, are highlighted in green once the SAI peripheral GPIOs are
correctly configured.

Figure 51. SAI GPIO and pin configuration

Clock configuration

Figure 52 provides the SAI clock configuration used in this example.

For more details about clock configuration, refer to “Allowed TDM frame configuration” table
in reference manual RM0433.

Examples of configuration based on STM32CubeMX AN5027

54/66 AN5027 Rev 2

Figure 52. SAI clock configuration for 2 microphones at 16 kHz

SAI configuration

Select the configuration tab then click on the SAI1 button as shown in Figure 53.

Figure 53. SAI configuration

Parameter settings

In the SAI configuration window, select the parameter settings tab and then configure the
parameters. The SAI sub-block A should be configured according to the following
conditions:

• Data Size = 16 Bits

• Frame Length = 16

• Output Mode = Stereo

• Companding Mode = No companding mode

• Frame Synchro definition = Start Frame

• Number of Slots = 1

• Slot Active = All

• Frame Synchro Active Length = 1

• Frame Synchro Polarity = Active High

• Master Clock Divider = Disabled

AN5027 Rev 2 55/66

AN5027 Examples of configuration based on STM32CubeMX

64

Figure 54 shows how to configure SAIA for an audio sampling frequency= 16 kHz.

Figure 54. SAI parameter settings

Examples of configuration based on STM32CubeMX AN5027

56/66 AN5027 Rev 2

DMA Settings

In this example the DMA handles the PDM data transfer from the SAI to the Memory.

In the SAI configuration window, select the DMA Settings Tab and add a DMA request.
Figure 55 shows how to configure the DMA.

Figure 55. SAI DMA settings

Cortex_M7 configuration

Select the configuration tab then click on the CORTEX_M7 button as shown in Figure 56.

Figure 56. CORTEX_M7 configuration

AN5027 Rev 2 57/66

AN5027 Examples of configuration based on STM32CubeMX

64

Parameter settings

In the CORTEX_M7 configuration window, select the parameter settings tab to configure the
Cache and the memory protection unit. This allows to enhance the performance in case of
use of AXI interface with several masters.

Refer to the Template project in the STM32Cube_FW_H7_V1.0.0 firmware package (V1.0.0
and later) under the following path “Projects\STM32H743ZI-Nucleo\Templates” for a typical
MPU configuration.

For more details about the memory protection unit configuration and use, refer to AN4838.

Figure 57 shows how to configure the Cache and the memory protection unit for this
example.

Figure 57. Cortex M7 parameter settings

4.3.2 Adding PDM software decoding library middleware files

Choose your favorite toolchain, generate the project with STM32CubeMX and open the
generated project.

For the STM32H7 Series, the PDM audio software decoding library includes one header file
“pdm2pcm_glo.h” and binary/object codes for the following platforms:

• libPDMFilter_CM7_IAR.a: for IAR compiler

• libPDMFilter_CM7_Keil.lib: for ARM compiler

• libPDMFilter_CM7_GCC.a: for GNU compiler

This Library is provided in the “STM32Cube_FW_H7” firmware package (V1.0.0 and later)
under the following path “Middlewares\ST\STM32_Audio\Addons\PDM\”

Make sure to add header file pdm2pcm_glo.h path to the project Include Paths and the
appropriate binary/object file to the project source files.

Examples of configuration based on STM32CubeMX AN5027

58/66 AN5027 Rev 2

4.4 Example 4: Interfacing digital microphones using DFSDM

This example is based on the NUCLEO-F413ZH board using external digital microphones
that are connected to DFSDM in stereo mode. It is applicable to the hardware connection
described in the Section 2.3: Digital filter for sigma delta modulators (DFSDM).

4.4.1 DFSDM configuration using STM32CubeMX

GPIO and pin configuration

After creating the STM32CubeMX project, choose the DFSDM1 peripheral from the listed
hardware in the Pinout tab and enable the needed DFSDM channels as shown in figures
below.

Figure 58 shows how to enable DFSDM channels in stereo mode. In this mode the enabled
channels must be successive.

Figure 58. DFSDM GPIO configuration in stereo mode

The used pins, DFSDM1_DATIN1 and DFSDM1_CKOUT, are highlighted in green once the
DFSDM peripheral GPIOs are correctly configured as shown in Figure 59.

AN5027 Rev 2 59/66

AN5027 Examples of configuration based on STM32CubeMX

64

Figure 59. DFSDM pin configuration

Channel configuration

In the DFSDM configuration window, select the parameter settings tab then configure the
parameters.

The value of the field Type is chosen according to the state of L/R pin of the microphones
connected DFSDM channels. In stereo mode each channel must read data on a different
clock edge to allow the microphones to share one data line.

Figure 60 and Figure 61 show how to configure respectively Channel 1 and Channel 0 for
an Audio Frequency = 16 kHz.

Figure 60. DFSDM Channel 1 configuration

Examples of configuration based on STM32CubeMX AN5027

60/66 AN5027 Rev 2

Figure 61. DFSDM Channel 0 configuration

Filter configuration

In this example, Filter 0 and Filter 1 are linked respectively to Channel 1 and Channel 0 as
regular channels.

The Sinc Order is configured according to the audio sampling frequency. Table 11 shows its
possible values.

The field Fosr contains the value of the decimation factor.

Figure 62 and Figure 63 show a configuration example of Filter 1 and Filter 0 for an Audio
Sampling Frequency = 16 kHz.

Table 14. DFSDFM filter order values

Audio Sampling Frequency (kHz) Filter order

16 Sinc 4 or Sinc 5 filter type

48 Sinc 4 or Sinc 5 filter type

AN5027 Rev 2 61/66

AN5027 Examples of configuration based on STM32CubeMX

64

Figure 62. DFSDM Filter 0 configuration

Figure 63. DFSDM Filter 1 configuration

Output Clock configuration

In this example, Audio Clock is selected as a source for DFSDM output clock which gives
the user more flexibility when configuring the clock.

The clock divider value must respect the following formula:

Divider = DFSDM Clock Source / (AUDIO_SAMPLING_FREQUENCY ×
DECIAMTION_FACTOR)

Figure 64 shows a configuration example of a DFSDM Clock Source = 48 MHz, an Audio
Sampling Frequency = 16 kHz and a Decimation Factor = 64.

Examples of configuration based on STM32CubeMX AN5027

62/66 AN5027 Rev 2

Figure 64. DFSDM output clock configuration

DFSDM DMA Settings

In this example the data transfer from DFSDM channels to the memory are handled by the
DMA thus reducing the software overhead.

In the DFSDM configuration window, select the DMA Settings Tab and add a DMA request
for each Filter.

Click on the recently created DMA requests and configure the settings as shown in
Figure 65.

Figure 65. DFSDM DMA setting

DFSDM clock configuration

In this example, the DFSDM output clock is derived from audio clock delivering a 61.44 MHz
clock to DFSDM as shown in Figure 66.

AN5027 Rev 2 63/66

AN5027 Examples of configuration based on STM32CubeMX

64

Figure 66. DFSDM clock configuration

Table 15 provides audio sampling frequency accuracy values for this clock configurations.

• For 16 kHz stream, the CKOUT frequency must be 1.024 MHz.

• For 48 kHz stream, the CKOUT frequency must be 3.072 MHz.

• The oversampling ratio is 64.

Table 15. DFSDM clock configuration accuracy values

Target
Audio Frequency

(kHz)
DivM DivN DivR

Output Clock
Divider

DFSDM clock

(MHz)
Accuracy

(ppm)

16 5 192 5 60 61.44 0

48 5 192 5 20 61.44 0

Conclusion AN5027

64/66 AN5027 Rev 2

5 Conclusion

The STM32 MCUs and MPUs provide a variety of audio and serial interfaces to connect
digital microphones giving the flexibility to choose the most suited solution for each
application.

This application note demonstrates the STM32 devices audio capabilities to interface digital
MEMS microphones by describing the different ways to connect these microphones to the
STM32 MCUs and MPUs peripherals and provides guidelines to use and properly configure
these peripherals to acquire and handle the raw data from the microphones.

AN5027 Rev 2 65/66

AN5027 Revision history

65

6 Revision history

Table 16. Document revision history

Date Revision Changes

14-Dec-2017 1 Initial release.

17-Jul-2019 2
Updated all document to enlarge the scope to all STM32
devices (MCU and MPU)

AN5027

66/66 AN5027 Rev 2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

	1 PDM digital microphones overview
	1.1 Sound acquisition overview
	Figure 1. Example of sound acquisition in audio application

	1.2 PDM digital microphone block diagram
	Figure 2. Typical PDM digital MEMS microphone block diagram
	Table 1. DOUT signal pattern selection
	Table 2. Pin description

	1.3 Basic digital microphones connection
	Figure 3. Mono configuration - Generating data on right channel
	Figure 4. Right channel data pattern
	Figure 5. Mono configuration - Generating data on left channel
	Figure 6. Left channel data pattern
	Figure 7. Stereo configuration: Sharing one data line
	Figure 8. Stereo configuration data pattern

	1.4 PDM and PCM signals
	1.4.1 Pulse density modulation (PDM)
	Figure 9. PDM signal

	1.4.2 Pulse code modulation (PCM)
	Figure 10. PCM signal

	1.4.3 PDM to PCM conversion

	1.5 Acoustic parameters
	1.5.1 Sensitivity
	1.5.2 Signal-to-noise ratio (SNR)
	1.5.3 Acoustic overload point (AOP)
	1.5.4 Power supply rejection ratio (PSRR)

	1.6 Added value of digital microphones
	Table 3. Added value of digital microphone

	1.7 Available ST digital microphones
	Table 4. ST digital microphones

	2 Connecting PDM digital microphones to STM32 MCUs and MPUs
	2.1 Serial peripheral interface (SPI) /Inter-IC sound (I2S)
	2.1.1 Mono configuration
	Figure 11. Connecting one digital microphone to SPI or I2S in mono configuration

	2.1.2 Stereo configuration
	Figure 12. Connecting two digital microphone to SPI block in stereo configuration
	Figure 13. Stereo mode timing diagram

	2.2 Serial audio interface (SAI)
	2.2.1 Using a single sub-block
	Figure 14. Connecting one digital microphone to SAI in mono configuration
	Figure 15. Connecting two digital microphones to SAI in stereo configuration using a SAI sub-block and a timer

	2.2.2 Using two synchronous SAI sub-blocks
	Figure 16. Connecting two digital microphone to SAI in stereo configuration using two synchronous SAI sub-blocks

	2.2.3 Using PDM interface
	Table 5. Recommended IO lines versus the number digital microphones to be connected
	Figure 17. PDM interface capability on interfacing up to four microphone pairs
	Figure 18. Data format when using the SAI PDM interface with a slot size of 32 bits, and 8 microphones
	Figure 19. Data format when using the SAI PDM interface with a slot size of 8 bits, and 8 microphones

	2.3 Digital filter for sigma delta modulators (DFSDM)
	Figure 20. DFSDM capability to interface up to 4 digital microphones
	2.3.1 Stereo configuration
	Figure 21. Stereo configuration

	2.4 Clocking considerations
	2.4.1 The digital microphone clock
	Table 6. Applications examples and the associated microphone clock frequency

	2.4.2 The peripheral clocks
	Figure 22. Bus and kernel clock topology for SPI
	Figure 23. Bus and kernel clock topology for SAI and DFSDM

	2.5 GPIOs number considerations
	Table 7. Hardware used to connect one digital microphone
	Table 8. Hardware used to connect two digital microphones
	Table 9. Hardware used to connect four digital microphones

	3 Digital signal processing
	3.1 PDM audio software decoding library
	3.1.1 Overview
	3.1.2 Digital data flow
	Figure 24. Digital data acquisition and processing (block diagram)

	3.1.3 Digital signal processing
	Figure 25. Digital signal processing

	3.2 DFSDM filters for digital signal processing
	3.2.1 Digital data flow: acquisition and processing
	Figure 26. Digital data acquisition and processing using DFSDM (block diagram)

	4 Examples of configuration based on STM32CubeMX
	4.1 Example 1: Interfacing digital microphones in mono or stereo mode with I2S, SPI or a single SAI sub-block
	4.1.1 Hardware configuration using STM32CubeMX
	Figure 27. I2S GPIO pin configuration
	Table 10. I2S2 clock configuration and accuracy
	Figure 28. I2S2 clock configuration
	Figure 29. I2S configuration
	Figure 30. I2S parameter settings
	Figure 31. I2S DMA settings
	Figure 32. SPI GPIO and pin configuration
	Table 11. SPI clock configuration and accuracy
	Figure 33. SPI clock configuration
	Figure 34. SPI configuration
	Figure 35. SPI parameter setting
	Figure 36. SPI DMA settings
	Figure 37. SAI GPIO and pin configuration
	Table 12. Clock configuration and accuracy
	Figure 38. SAI clock configuration at 16 kHz for mono mode
	Figure 39. SAI configuration
	Figure 40. SAI parameter setting
	Figure 41. SAI DMA settings
	Figure 42. DMA request settings
	Figure 43. TIM GPIO and pin configuration
	Figure 44. TIM configuration
	Figure 45. TIM parameter settings

	4.1.2 Adding PDM software decoding library middleware files

	4.2 Example 2: Interfacing digital microphones in stereo mode with SAI using two synchronous sub-blocks
	4.2.1 SAI configuration using STM32CubeMX
	Figure 46. SAI GPIO and pin configuration
	Table 13. SAI clock configuration and accuracy
	Figure 47. SAI clock configuration
	Figure 48. SAI parameter settings
	Figure 49. SAIB parameter settings
	Figure 50. SAI DMA settings

	4.2.2 Adding PDM software decoding library middleware files

	4.3 Example 3: Interfacing digital microphones in stereo mode with SAI using PDM interface
	4.3.1 SAI configuration using STM32CubeMX
	Figure 51. SAI GPIO and pin configuration
	Figure 52. SAI clock configuration for 2 microphones at 16 kHz
	Figure 53. SAI configuration
	Figure 54. SAI parameter settings
	Figure 55. SAI DMA settings
	Figure 56. CORTEX_M7 configuration
	Figure 57. Cortex M7 parameter settings

	4.3.2 Adding PDM software decoding library middleware files

	4.4 Example 4: Interfacing digital microphones using DFSDM
	4.4.1 DFSDM configuration using STM32CubeMX
	Figure 58. DFSDM GPIO configuration in stereo mode
	Figure 59. DFSDM pin configuration
	Figure 60. DFSDM Channel 1 configuration
	Figure 61. DFSDM Channel 0 configuration
	Table 14. DFSDFM filter order values
	Figure 62. DFSDM Filter 0 configuration
	Figure 63. DFSDM Filter 1 configuration
	Figure 64. DFSDM output clock configuration
	Figure 65. DFSDM DMA setting
	Figure 66. DFSDM clock configuration
	Table 15. DFSDM clock configuration accuracy values

	5 Conclusion
	6 Revision history
	Table 16. Document revision history

