
Page 1

Copyright © 2024 Matrix TSL

Touch and graphical displays part 5 - Menu system programming

Figure 1 - Youtube video link

The project

In this arƟcle we are going to show you how to program a full Menu system using Flowcode.

 How the components work
 Touch screen properƟes
 Touch screen component
 Graphical LCD display manager
 Themes
 Architecture of the program

Lets remind ourselves of what we are trying to achieve:

Figure 2 - The task ahead of us

Page 2

Copyright © 2024 Matrix TSL

Let’s start by looking at the panel for this project:

Figure 3 - project panel

A few things to note:

When designing a system you can use Flowcode to put the specificaƟon of the system on the panel. So here we have defined
all the colours and the fonts as constants in Flowcode so we don’t need to keep thinking about what we are using where.
Secondly we have put the screen graphics specificaƟon from the graphics designer as bitmaps on the panel. I can see what the
goal is and the sizes of the objects are on each screen.

As for the components:

 The main display is an ILI9488 cap touch colour graphical LCD. The integrated touch chip is a FT6X06 and there is a
component linked to the graphical display.

 The Graphical LCD Display Manager component includes rouƟnes for managing the touch widgets and menu system
 The Graphical LCD Bitmap Drawer component allows you to define bitmaps which are then compiled to the

microcontroller along with the program.
 The PWM component allows you to vary the brightness of the display.
 The target device here is an ESP32-S3_DevkitC.

Let’s look at the properƟes of each in turn.

Graphical Display properƟes

The display by default is portrait. We are using it in a landscape orientaƟon. You need to set up the properƟes so that it is in
landscape. You also need to iniƟalise it as landscape in a hardware macro. The connecƟons are parallel. It’s a fast display. The
Font properƟes are set up here. There are lots of fonts to choose from. Fonts are compiled to the microcontroller and are
memory hungry so you need to declare how many you want to embed. In this case we have 4 fonts.

Page 3

Copyright © 2024 Matrix TSL

Figure 4 - Display properƟes

Touch screen chip properƟes

The touch screen links to the Graphical Display. The properƟes allow you to set up the bus, connecƟons - in this case I2C - and
the XY parameters.

Page 4

Copyright © 2024 Matrix TSL

Figure 5 - touch screen component properƟes

Bitmap drawer properƟes

Figure 6 - Bitmap Drawer properƟes

Page 5

Copyright © 2024 Matrix TSL

The Bitmap drawer component links to the touch screen. This is where you declare the bitmaps you will use.

When you declare a bitmap Flowcode brings the bitmap file into its memory. Currently (August 2024) if you change the bitmap
file you need to Reload it using the Reload property.

Bitmaps are memory hungry. Flowcode handles 24 bit, 8 bit and 4 bit bitmaps. The properƟes show you the paleƩe used and
the memory used.

You can setup to 10 bitmaps. You need to declare the number of bitmaps in the properƟes so that Flowcode knows how much
memory to allocate during compilaƟon.

 Graphical LCD graph properƟes

Figure 7 - Graph properƟes

The XY Graph component links to the Graphical Display. The properƟes allow you to set the posiƟon, size and graph
parameters. The graph has its own Colour theme. The colour numbers here are the Hex equivalent of the RGB parameters in
the colour picker: not ideal. Our background colour is SlateGrey, the Border and grid are DimGold and the line is drawn as a
red line.

Figure 8 - The Home screen specificaƟon

Page 6

Copyright © 2024 Matrix TSL

Architecture of a touch screen program

 Figure 9 - Main program rouƟne

Figure x shows the MAIN program routine. In our system we will treat each screen display as a separate program macro. That
keeps things neat. We need to navigate between screens depending on which on-screen buttons are pressed. To control this
navigation the next_screen variable controls which screen is going to be displayed next

Why introduce this complexity? Each screen sets up the screen graphics and parameters and then goes into a WHILE loop
waiting for user interaction. If we navigated between screens without closing the WHILE loops then the internal stack memory
would become overloaded: we always need to close the WHILE loop. So every time there is a navigation between screens we
jump back into the MAIN routine which then directs where the program goes next.

The first commands initialise variables and components. Next we test to see if a variable has been adjusted and if so set next
scree to Program screen. Then we test the value of Next screen in a Switch icon and invoke the relevant Macro.

This is the fundamental architecture that allows you to have many screens. Each screen has a number starting at 0.

Tracking variables

In our system there are numbers that represent colours, screens, themes and so on. Its a lot to track mentally. To get round
this we have allocated constants to represent these numbers. For screens this is as follows:

 Home_screen: 0
 Menu screen: 1
 Set_date_screen: 2
 Set_time_screen: 3
 Program_screen: 4
 Set_temperature_screen: 5

This allows us to forget about the actual numbers and just refer to these screens by Constants. The only exception to this is the
SWITCH icon where numbers must be used inside the dialogue box rather than constants or variables.

This takes care of the navigation between screens. Let’s look at the Home screen details:

Page 7

Copyright © 2024 Matrix TSL

Figure 10 - first part of the Home screen routine

Home screen

There are two parts to this: the first part sets up the screen itself. The second part is a loop that waits for user interaction.

Setting up the screen

These macros consist of a lot of graphics statements: set the foreground colour, draw lines, print text etc.

Keeping track of the RGB parameters that make up a colour is difficult. So what we do is set up a bunch of constants to track
the colours we are using. Our colour table is as follows:

Gold – bright text 255 204 41 GoldR, GoldG, GoldB

Dim gold – dim text, axes 158 137 15 DimGoldR, DimGoldG, DimGoldB

Brown - buttons background 99 90 54 BrownR, BrownG, BrownB

Slategrey - screen background: 75 75 78 SlategreyR, SlateGreyG, SlateGreyB

Lightgrey - top background 96 96 98 LightGreyR, LightGreyG, LightGreyB

Setting up your colours a RGB constants in this way as the advantage that if you want to tweak colours later then you can do
that globally.

Page 8

Copyright © 2024 Matrix TSL

Figure 11 - Touch detect part of the Home screen routine

Touch detect routine

There is only one button on the Home screen - a menu button. The first commands displays a Menu bitmap on the display and
then declares a touchable Widget on top of it - in this case the Widget is rectangular and is hidden.

The routine then goes into a loop which only ends when the Next_screen variable changes.

The touch component is sampled for a touch. If there is a touch the X, Y location of the touch is passed on to the Graphical
Display component which compares it to the co-ordinates of the declared touchable areas. If the touch is on a valid
component the Graphical Display returns the ID of the valid component and in the TouchedObjectID variable.

All the other screen macros are just a variation of the Home screen macro with more IF commands in the touch detection
routine.

IDs of touchable objects

Allocating memory space is a key Flowcode task. We have seen above that Flowcode needs to allocate memory space for fonts
and bitmaps and that makes sense. Because of the way Flowcode uses memory to create Objects and Widgets the maximum
number of each also needs to be declared.

The Display Manager has hardware macros to allow you to draw objects and touchable widgets. As the Display Manager sets
up widgets it automatically allocates a unique ID to them. The ID number starts at the maximum declared number of Objects -
50 in our case - and assigns them to Widgets incrementally as they are created.

Tracking this manually is a pain. So what we do is assign a variable to each touchable object and as the Widget is created we
assign the ID value to that variable. In this case you can see that where the Menu button is assigned the CreateWidget routine
assigns the ID to the variable MenuButtonID.

Page 9

Copyright © 2024 Matrix TSL

Figure 12 - Create Widget dialogue for the Menu button assigning ID to the MenuButtonID variable

Debugging touch screen operaƟon

Making sure that your program traps the right IDs on a touch should be straighƞorward if you assign IDs correctly at the point
of Widget creaƟon. However The matrix simulaƟon engine has a great debugging tool: the Console. This is a really useful tool
that allows you to compare the ID number created during the screen set up with the variables you have assigned. Before
simulaƟon select VIEW….CONSOLE and click on the Display Manager tab and as the Display Manager creates a widget, or
detects a touch it puts the details on here. So you can see what the Display Manager is doing at all points of the program and
if you do have a navigaƟon issue you can use this to solve it.

This shows you the basics of seƫng up the overall architecture and a typical screen. The rest of the program is a variaƟon on
this theme. The Program screen has 20 touchable objects and we use an array system to track the touchable IDs created by
Display manager. Of course with a program like this there is a reasonable amount of code to track variables and the program
funcƟon.

Page 10

Copyright © 2024 Matrix TSL

Figure 13 - Console dialogue during simulation

Conclusion

Touch screens are replacing indicators, potenƟometers and switches in electronic devices. The number of products on the
market is rising fast as engineers take the opportunity to incorporate touch screens into their designs and increase
funcƟonality and reduce cost.

Flowcode is compaƟble with thousands of touch screen graphical displays. Flowcode now includes a range of components to
allow engineers to design, simulate and deploy touch screen displays.

There are three main areas of work in touch screen system design:

 Graphics
 Touchable elements, navigaƟon and logic,
 The rest of the program

Flowcode 10.1 is equipped with soŌware components for all of these for thousands of devices. Flowcode’s simulaƟon
capabiliƟes make it an idea choice for graphical touch screen system design.

