E ELDGKSE

CAN Bus Communications

PPPPP

1d 17X
l I I CAN Bus Training — Course Notes

CP2793

CAN Bus
Training

Course Notes

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

Contents
IIEEOQUCTION. ...ttt ettt ettt ettt b e bt sb e sb e b sae st e aenenee e 7
1 Demonstrations, Worked Examples and EXEICISEs.......ccievverierierierieiieieiiereeeeieeeeesreeeesseesneenenes 8
1.1 DIETMONSITALIONS. ... enteuteiteiieit ettt ettt ettt st ettt et et et e st es e e bt e bt eb e e bt sbe et e e sbeesbeesbeesneesaneens 8
1.2 WOTKEA EXAMPIES......euietiieieiietite ettt ettt sttt ettt e s st st ebeebeseesaeenneens 8
1.3 B TCISES .ttt ettt ettt ettt sttt et e et et e et et et e st e nt e st ebeebeeaeeb e e ebeeebeeeneeeneeenneen 8
1.4 FUITRET WOTK ...ttt ettt et eae e e et enaeenee e e 8
2 Basic CAN NEtWOTKINEZ.ceueiuieiieiieieiee ettt ettt et e sttt e et et esae et e e eneeeeneeeeneeens 9
2.1 OVEIVIEW ...ttt sttt ettt ettt et b e bbbt eb s bt s bttt e b b st et et et et e st ententeutebeeteenbeens 9
2.2 WHAL IS CANT .ottt ettt b et b et b e b st ae s b e st e sbeesaee e 9
2.3 NOAES AN NEEWOTKS. ...c.euenieiieiieiieieeteet sttt ettt ettt sttt st ae s bt e s beeseeeeaeeane 9
2.4 The PhYSICAL JAYET.....c.eiieieiiiieie ettt st s te et eetaesbeesnsaeenseeesseenes 10
2.5 IMIESSAZES. .. cvtenteeitettente et ettt et et e bt et e bt e s e bt e st e bt et e e ae e bt e h e e e bt e et e sb e ea b e eh e en b e e bt et e enb et ebteesabeeeane 10
2.6 Higher Level PrOtOCOIS. ..ottt 11
3 CAN training SOIULION.cveutiuieiieieiiitieetere ettt ettt ettt st b et esbeenbeenae 12
3.1 The CAN DOAIA. ..ottt et a et sa e e e aeenae e et e e eneeeenee 13
3.2 Setting Up the CAN SYSIEIM...c..ecuieiiieieiieierie et ete st eie st e e setebeeseesteeaesseensesseensesnseeennsessnne 14
33 TEStING YOUL PIOGLAIMS.eveeueeeeieeeeeeesteeetesteetesseesesseensesseesseeseesseassesseansesseeseesnsessnsseesnsessnns 15
34 Setting up the Kvaser CANLeaf analyzer..........cccoecvevvieieniieienieeiesieeie e 15
4 The Matrix CAN imMPIemMENtation..........ccevierierierieiierieieerieeeesteeeesteeseesseeseesseesesseesaesssaeensseesnsens 17
4.1 The PhSICAl JAYET........eouiieiiieieie ettt st 17
4.2 The Flowcode CAN COMPONENL......cc.iitiriiriiieieieieiieicee ettt ettt sttt see e et eseeseeeeeees 17
43 Target MicroCONtIOIIEr AEVICES.eiiuiieieiieiieiieiieie ettt st 18
4.4 CAN COMPONENE SEELINES. ..c.veeueeeienieeiierieeiierteete et eeeeteenteeteeteesee et eseeseeensesaeeseesnseeenseeesnneeanne 19
4.5 Flowcode Configuration SEHHNGES..........ccuerveeieriieiierieieeeeeteeeeeesteteseeesseseeseesnseeennseesseeenes 19
4.6 PIC development board/E-bIOCKS SELHNES........ceevueriierieriiereiieieeieie et 19
4.7 CAN INItIAlISE MACTO. ...c.vetitiitieiiiterte sttt ettt sttt sttt et e b e seeenaee 19
5 Basic CAN SIGNALS.......ccueriiieriieieiieiesteeieette et ea e et estesseessesstessesssessaessesseessenseessesssseensseensseeensees 20
5.1 Implementing basic CAN signals in FIowcode..........cccoeiiiiiiiiiiiieeeeeeeeee 20
5.2 USINg basic CAN SIZNAIS.......iiuiriiiiieieieieet ettt et ettt e seee e eee 21
6 CAN DEMONSTIALIONS. ...ccuveeeieteeieeeetete st ete et e et e e et et e st e bt eaee st eaee st eneesaeeneesseensesseensesseeennseeensees 22
6.1 DIMOT — STATt-UP SCAN....eetieeeieieieeiiete ettt ettt et et e et e et e steeneesseeeesseeaesseeseeembeeenneeesnneeenns 23
6.2 DMO2 — CAN IMOMILOT. c. vttt sttt ettt ettt ettt st be st sttt e nbeesaeesaeenaee 25
6.3 DMO03 — Sensor DiagnosticC PrOZIAIMNL.........ecueereerteereeieeiereeeeenteeeesseeeesseesesseesesseensesseensesseens 27
7 Worked Example 1: BraKe!!! . ..ottt sttt snae e 29
7.1 O DJECLIVE. .. evveiieeieetiete et ete st e te et e teestesteesbesseesseeseesseeseesseesaesseessessaessesssessesssessennseeensseennsananes 29
7.2 Part 1: The DaSiC PrOGIAIMS.c.coutiuiriiiteiterieiesteie ettt ettt ettt st te st e s et e e eseeseeseeeeesees 29
7.3 Part 2: A Second reCeIVe NOAE.......c.coiruiiiiiiiiieiiit ettt 31
7.4 (07074 1o] 18153) TSP UPRSPSN 31
7.5 FUITRET WOTK ...ttt ettt b et s et eeaeeenneeeas 31
8 Demonstration 1: Brake!l......ccoooiiiiiiiiiec ettt 32
8.1 1101 o JEO OO OO OO PO PO PTOPPRTOPI 32
8.2 VIEWING the MESSAZES.ecvveveriieiieiieiieeiestietesteetesteetesteessesseessesssesesssesseessessesssesseessseesssseens 32
8.3 Part 1 — The brake Light...........ccooviiiiiieiiiee ettt eaaee e 32
8.4 Part 2 — The dashboard diSplay..........cccoeieieiriiirere ettt e 32
8.5 COMCIUSIONS. ..ttt ettt ettt ettt ettt et et et e et e st e st e st ebeebeebesbe st ebe st embeeneeenees 32
8.6 FUITRET WOTK ...ttt sttt ettt et e sttt e eneesnneeeas 33
9 Fault finding in CAN SYSEEIMS. .. .ecueeiieuiirtieieett ettt sttt es et es e te et e saeeneeseeeneeeenees 34
9.1 1101 o OO OO OO OO OO T PP POPRRTOPP 34
9.2 VIEWING the MESSAZES. ... ecveeveeiieiieiieieeiete ettt ete st et e st etesstetesseesesseeseesseseessaseesnseesseeans 35
9.3 Part T — F Lottt b bt b e bt b et et 35
9.4 Part 2 — F2, F3, FS5, FO, FT. oo 35
9.5 Partial OPEN CITCUILS.eeiieieieieie ettt ettt ettt ettt s e ebe e st ebeebeebeseeeneeenee 35
10 Intermediate CAN NEWOTKING......coveieiiieietiitietietiete sttt ettt ettt ettt st ee st e besbeeneeseeees 36
11 The CAN COMPONENL......ccuririruirtirirtertintentententetestetetestestesteuteuteseetesbesaeseeesesbesaeseesaeesanesaneseneenneen 36
| B € 1<) T 1 214 V4SS 36
11.2 Transmit BUfferS......coooiiiiiiiii ettt e 37
11.3 RECEIVE BUFTEIS. ...ttt ettt 38

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

12 Working With MeSSaZE 1D S......ccueviieiieiieiicieieeiteie ettt sttt eesesse b steessessaeessseeenseeensnas 39
12.1 Checking MesSage ID S........ccuieiieiieieniieiieieieeteteetestestessesae e sssesseessesseessessaeessseesnseeensses 39
12.2 Manual Message ID’s — a recommendation.............c..eeerererienenenienieieieceeeeeee e 40

13 Exercise 2: Rear Light CIUSTET.......cc.iiieiiiiiiiiieie ettt ae et s sb e s e e e enns 41
[3.1 Part Az SENAING......eiiieieieieeee ettt sttt ettt a et et et e e e e nes 41
13.2 Part B: RECEIVING . eueetiiuieiieieiteee ettt ettt sttt et e et e e nae e e e e enneas 41
13.3 FUITher WOTK..c.ooiiiiii ettt 41

14 INOtES fOr EXEICISE 2...ouiiiieieiiieie ettt ettt ettt ettt et esae et e sse e e sseensesseensesnseesnseesnneas 42
T4. 1 Part A: SENAING.....cc.ocuieiieiieiieiete ettt esie sttt e te et et e esaesseessesseessesseessesssensessseessseeensneensses 42
14.2 Part B: RECEIVING....ccuiiieiiiieiieieetieieett ettt ettt et estesaessessaesseessesseessenseessesnseeensseesssaeensses 42
14.3 INAICALOTS. .. oottt ettt ettt b ettt et et e s b et et et et en s et e st eseeseeseebeebeebeenneenee 44
14,4 CONCIUSION. ...ttt h bttt et e bt s bt sttt e st et e e e et e st e st eneeseebesbeeaeeteens 44
14.5 MAJOR ERROR!!! —Is the Brake on?.........cccocieiiiieiiiieieeeieees e 44
14.6 FUIther WOTK.....ooiiieieee ettt se e e e 44

15 Demonstration 2: Rear light CIUSTET.........cceiiiieiieieieeee e 45
IS.1 SIUP. ettt ettt ettt ettt h e b ettt ettt et be bbbt e ee 45
152 VIEWING the MESSAZES. ..evierirrieiierierieeiestestestestessesssessesssessesssesseessesseessesssessesssessessssssssseesnns 45
153 The HGIt CIUSTET....cuieieiiieieciieieetee ettt ettt st e et eesa e s e esaesseesnesseensesaeenes 45
15.4 T IMESSAZES. c..evevetetiatiiterteetete et et e et et et e bt et e ebeebesbe et e besee s e b e e et en e eneene e bt e saeesseeseeesnneenes 45
15.5 Other netWork traffiC.........ooiiiririeeee et e 45
T T O7e) o Ted LT 103 4T3 USSR 46

16 Notes for DemONSIrAtion 2.........coouieriiiierieiieeeieee ettt ettt et ettt sbe e tesbeenteebeeesneeesaeeas 46

17 Changing MesSSaZE IDS.......ccuieiiriieieiieieee ettt et e e st e e eneesaeeneesnneeeenseesnseas 47

18 Exercise 3: Rear light SYStEIML.......c.coueviiiiiiiiiiiiiiiiienerc ettt 49
18.1 Part A: SENAING.....cc.ocuieiieiieiieieteeteteetete et et e teetesteesaesseessesseesseeseessesseensessseesssaeensneensses 49
18.2 Part B: RECEIVING....ccuiiieiiiiieiieieciieieettet ettt ettt etesaessessaesseessesseessenseessesnsaeensseennsaeensees 49
18.3 FUINET WOTK....eiuiiiiiiiitietcee ettt ettt ettt st e 50

19 NOLES FOIr EXEICISE 3...ueiiiiiitiieieieiete ettt ettt et ettt ettt b e s bbb e b et eneeees 51
| B I 0 T 010 e ¢ 4 LRSS 51
19.2 CONCIUSION. ..ttt ettt ettt et e b e e et sae e tesaeeaeeseenbeeseenneenes 51

20 Demonstration 3: Rear light CIUSEEI..........ccoeiieiiiiieiecieee e 52
20,1 SELUP. ettt etttk b e e b e a ettt ettt beebe bt be e 52
20.2 VIEWING the MESSAZES....cvveveerierieierieeierteetesteetesseesesseesesseessesseessesseessesssessesseessesssesesseesnns 52
20.3 The HEIt CIUSTET......ueeieciieieeiieieeeee ettt sttt sttt e e e saesseesseseensesseensesseenes 52
20,4 T IMIESSAZES. c..eveeveuertietertertietetestetentetesteteeteeteeteeteabesteetesbease s ensensenteneeseeneabeesseesaeesanesneennne 52
20.5 CONCIUSIONS. ...ttt ettt ettt ettt ettt ettt et e e s et e st e st ebeeaeebeebesbesbesbesbesbenbeenbeenbeenne 53

21 Notes for DemoOnStration 3........ccc.ooieriiiieiieieit ettt ettt et e e st eaeeseesaeeneeeeneeeanee 53

22 MESSAZE DIAtA. .. .ieiiiieiieee e ettt bt et b et b ettt e at e e stee e e 54
22.1 Default Data PrOPerties.......ccvecereriereeiereeiesieeeesteetesseesesseetesseesesseesesseensesseeesnseesseesnnes 54
22.2 Changing Message Data...........ccocerereriiienieiiiiieeeeetne sttt ettt ettt 54
223 Keeping track 0f data........cccciiiieriiieriiciesieeiese ettt s e enees 54
224 SENAING AALA.......iiciiitieieciieieeeete ettt ettt b et e st e st et e eseenbeeseeseensaeennneeanne 54
22.5 ReceivINg MeSSaZE Data......c.cciiiiiiiiiiiiiietieterte ettt ettt ettt st et nbee e 55
22.6 Data order CONSIAETALIONS. ...c..eouirteriirtiieieieiet ettt ettt ettt st et sttt et et ene e e eneebeeneeens 55

23 Example 4: Fuel gauge and warning light..............oocoiiiiiiiiiiieee e 57
231 Part A: SENAING....ccuiiiieiiiiee ettt sttt sttt e be e e 57
23.2 Part B: RECEIVINE....cuiiiiiiieieciieieetiee ettt ettt ettt ettt e et e enseeneeeenseeenseeennees 57
233 FUIRET WOTK...oeiiiiiiee ettt ettt et ae e sae e e ennes 57

24 NOLES FOT EXEICISE 4...eiviiiiiieieietee ettt ettt ettt e b bbb sa e et e e e 58

25 Demonstration 4: Fuel gauge and warning light.............cccccoeveriiiieniniienieiesecieccee e 60
25,1 SBIUP ettt et ettt et bttt s b e et bt e b bt e bt e ie et e naae 60
252 VIEWING the MESSAZES....ccveevierierierieiieeeerteetesteetesteessesseessesseessesseessesseesesseessesseessesssseesssessnns 60
253 The fUCT IEVEL.. oottt ettt et a e e e e e sae e 60
254 The warning LHght.........ooiiiii ettt et 60
255 VIEWING the data.......ccciiiiiiieciieie ettt ettt ettt ae s et e s et esseenteeneenteens 60
25.60 CONCIUSIONS. ... eetieiietieiietiete ettt et ettt e te e te bt et e s ae e s e e st esee st ensesseeneeeseenseeseensesneenseenseeennseesnne 60

26 Advanced CAN NEtWOTKING.c.occveriireierieieriieiereetesteetesteetesseesesteessesseessesseessesssessesssseessseennns 61
26,1 EXCICISES..utiuiiuiitietiiteitieteete sttt ettt ettt b et h bt et b ettt et ea bt ae e bbbt nhae bt e 61
26.2 Masks and fIIEEIS. ...c.eeiieieieeee ettt eaee e 61

26.3 How to work out which messages will be trapped by a particular mask/filter combination. 62

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

20.4 CNF SCLINES....cuveiiieieiieieitieiestieteeteete st etesteesaesseessesseessesseesseasaesseessesseesseseessesseessesseensessnsns 63
26.5 MeESSAZE AELALLS......eeivieieiiieieeiieieetet e tet ettt et et et ettt et e et e et e teenbe e nneennneeenraeennnes 64
26.60 EITOT AEIECTION. c..cueeuietiiiiitietiite ettt ettt ettt ettt sttt e et e st st e e et et e et en e e st eseebeaneeens 64
26.7 Wiring and other PractiCal ISSUES.........ceccvirieriieieriieiesteeeesteeee e eeesteeaesteessesseesseessseeessseennns 65
I N (53 (<) (oo 1 TSP SRURRORP 66
27. 1 CAN StANAATAS.eeneitieiietiee ettt ettt et sa e et s e et et e smbeeebeeeeeee 66
27.2 Higher 1eVel ProtOCOLS.......eecuieeieiieeieee ettt ettt et eee st etesreenseenseeennneeanne 66
27.3 Acronyms and abDIreVIAtIONS.c.eeierierierieriereeeeieiesecete ettt et eneeee e e seeeneeseeenseeennes 67

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

Introduction

These notes are designed to introduce you to the concepts required to understand CAN networks and
also to provide practical exercises with which to develop your skills as well as those of your students.

The course is structured into a number of sections that first take you through the basics of CAN and
then into intermediate topics, such as messages and sending data. The course also deals with some
more advanced topics, including the use of masks and filters. Examples and suggested work is provided
as a basis for developing demonstrations and practical activities for your students.

These notes provide a framework for teaching CAN to students. How you use them for teaching is up
to you. If you are teaching automotive students who do not need to know how to program you can
simply make use of the downloadable example programs.

This course is carried out using Flowcode, a graphical programming language. The Flowcode CAN
component is designed to allow students to learn about CAN without getting bogged down with the
problems of programming in C or a lower level language.

When teaching automotive students about CAN we do not envisage a great deal of programming will
take place in Flowcode. However we suggest that the supervisor should have some Flowcode
experience for debugging purposes. This can be quickly and easily acquired.

More advanced students will want to use Flowcode extensively. There are a number of tutorial files and
resources on the Matrix TSL Flowcode web site that students can go through to help them understand
how Flowcode works. Students will find that they can make rapid progress using Flowcode’s graphical
interface.

This course is designed for use with two levels of student:

1. Firstly for use with automotive technicians at Level 3 to gain an appreciation of CAN
technology and the equipment used in fault finding CAN systems, and how that fault finding
takes place. These technicians are expected to download and review programs made in flow
charts, but are not expected to carry out any programming tasks.

2. Secondly for more advanced students at Level 4 to gain an understanding of CAN technology
and to allow them to construct networks which communicate in CAN and higher level
protocols. These students are expected to develop their own CAN networks using flowcharts
with CAN macros provided. The extensive use of flow charts will allow students to quickly
and easily understand CAN protocols and communication, avoiding the need to become
involved with the processes of lower level CAN bus software construction.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

1 Demonstrations, Worked Examples and Exercises

There are three kinds of exercises found in the notes; demonstrations, worked examples and examples.
We will briefly describe what we mean by each of these.

In the case of E-blocks2 based solutions, all the programs supplied on the CAN Solution CD require
Flowcode V8 or higher to be installed on the host PC.

1.1 Demonstrations

Demonstrations are provided that can be used with technicians to see a CAN system in action.

All programs will be provided so that they can be programmed into the nodes. No programming is
required, but the Flowcode flowcharts are available to students to show how they work. The
demonstrations are best used in conjunction with CANKing to allow students to see the messaging in
action, and to note the effect different programs have on the network traffic.

Demonstrations can be used to teach the fundamentals of CAN to students who are not required to
understand and check CAN systems but will not need programming skills.

1.2 Worked examples

A worked example is provided for the first basic example to allow students to be eased into both CAN
and Flowcode. The emphasis here is on getting students “up and running’ with a simple CAN system in
Flowcode that can then be used as a base of experience for later examples.

1.3 Exercises

Further exercises are provided, along with a set of accompanying notes. The notes give information on
setting up various aspects of the solution and can form the basis for handouts.

1.4 Further work

Questions to ponder and suggestions for further work are given with each exercise. This further work
can be used as the basis of differentiated student activities, thus meeting awarding body requirements
in situations where the CAN solution is being used in conjunction with a formally assessed course.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

2 Basic CAN Networking

2.1 Overview

This section is designed to get you up and running with a CAN Network as fast as possible. You will
be introduced to messaging and how to send receive a simple signal that can be acted upon. The sample
applications will introduce you to several basic CAN features, and will serve as a starting point for
further study.

2.2 Whatis CAN?

CAN - Controller Area Network is a serial network protocol. By which we mean it is a pre-defined
way to communicate between different parts of a system. Each part needs to speak the same language,
and use a common set of signals and message structures in order to be able to understand the messages
and in turn to be understood. CAN is one such system.

Other systems, such as RS-232 are often point to point systems where one device will talk directly to
another. A limitation of this system is that you may need to run several different connections to speak
to different parts of the system, or one part may need to talk to another but may only be able to do so
via an intermediary.

CAN offers a simple solution to this problem. It sends the message to all parts of the system, and lets
each part (or node) decide for itself if the message is for it or not. Built in error checking and responses
to messages help prevent lost messages, or jammed systems where the system zangs whilst waiting for
a response to come in. Also messages can be responded to by multiple devices or even none at all,
making it easier to construct a system that only reacts wherever and whenever it needs to.

CAN has various inbuilt systems for error detection, and ways to prevent all the nodes trying to talk at
the same time. But you never see this, it’s handled by the CAN chip behind the scenes. All you need to
do is decide what messages to send and receive.

Another benefit of the CAN system is that if you wish to add another part to the system it can often be
as simple as programming it to respond to the appropriate messages and wiring it into the network. You
don’t need to connect it up in any specific place or sequence so you can slot the new node in wherever
you want, or wherever the physical system design requires it to be.

CAN was originally designed by Bosch for the Automotive industry, evolving from a need to
communicate between the various ECU’s (Electronic Control Units) on luxury cars. Since then CAN
has grown to become a popular network system, particularly in embedded systems. CAN is used on
vehicles such as cars, boats, planes, trucks, and in many other areas of industry. CAN’s high speed and
robust nature make it particularly suited for industrial or high speed applications.

2.3 Nodes and Networks

CAN systems comprise of two or more nodes connected in a network as shown in Fig. 2.1.

The network is the data highway to which the nodes are connected. Unlike many other systems where
the connections run from device to device the CAN network is free standing. Each node feeds off the
network, but does not block it, or prevent the other nodes from receiving the message.

The nodes can send messages onto the network, and can listen to the network to see if there are any
messages on it. The node can then check the message to see if it should respond to the message, or if it
should ignore it.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

Termination Termination
resistor resistor

Engine
temperature
sensor

e e

I@ instrument panel

%'_% Foot brake

Night
Indicator
Brake
Reverse

Right rear
light cluster

e ol

% Left rear
light cluster
55 & ER.
z 3 &5 %
l CAN bus s © &

Figure 2.1 Typical automotive CAN bus arrangement

Nodes are independent of each other, and can be as simple or as complex as the system designer wishes
them to be. A node could be a single light, or a whole dashboard. By virtue of the nodes being
independent they can be added, removed or modified without needing to change any other part of the
CAN network.

For instance two models of a car may have different dashboards, one a deluxe model with extra
features not found on the basic model. The dashboards are both sent the exact same messages by the
CAN network; it is what messages they accept, and what they do with them that makes them different.
The CAN network does not care if a signal becomes a single light, or a strip of LED’s. It does not even
care if the ‘Fancy RPM display’ message is ignored when the basic dashboard is fitted. The CAN
network simple puts the messages onto the network, and leaves the nodes to decide whether to use
them or not. As there is no change to the messages sent, the CAN network does not need changing to
accept the different dashboards so either dashboard can be slotted into the network.

2.4 The physical layer

The CAN specification does not specify the physical signal transportation layer, only the message
format. By doing this CAN allows system designers to implement a physical layer appropriate to the
system rather than having to adapt the system to match a preset physical layer.

This is a very important issue as it means that the way CAN is implemented in the physical layer can
and often will differ from system to system. The physical layer for a plant wide heavy industry CAN
system is likely to differ in many ways from one built into a luxury car. A CAN system such as the
Matrix CAN board is essentially our implementation of CAN using our own Flowcode component and
our own CAN board to drive the physical layer. Some parts of the overall system, such as the format of
the message sent are an integral part of CAN as defined by the CAN specification. Others such as the
RX and TX buffers (discussed later) are part of our implementation of a physical layer for CAN.

2.5 Messages

Messages are the beating heart of the CAN system. Without them it’s just a load of redundant wires
and circuit boards. Each message consists of an identifier (the Message ID that will become important
later on) and a stream of data. Actually, there’s more — acknowledgment bits, checksums, transmission
details etc. but these are dealt with automatically by the CAN component. All you need to worry about
is the ID and the data.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

The Message ID’s are used to help differentiate messages. A node could accept certain messages, and
skip others depending on their ID values. This allows complex interrelated systems to be designed
easily where multiple nodes can respond to the same message as easily as a single node can pick out a
message that only it will respond to.

Messages can contain data or be completely empty. For many simple signals such as a brake light the
act of sending a message may well be enough — a signal is sent and is reacted to. For others e.g. RPM,
or temperature readings, data of some sort is required and can be passed along with the message. If data
is sent it does not even need to be looked at. An aircraft RPM sensor reading could be used by one
node to display the actual RPM, but on another node to simply activate an ‘engine running’ warning
light without even looking at the data.

2.6 Higher Level Protocols

CAN is a message system. It is not responsible for the contents of the message. CAN does not care if
data is expected, or if the incorrect amount of data is sent. It is not responsible for ensuring that the
message is being sent to the appropriate node in the system, only that it is correctly sent to a node.
CAN only cares that it is a correctly formed CAN message.

However, we do care about the data. We care about which node it gets sent to. We care about these
things enough to create higher level protocols to deal with these kinds of issues. These protocols sit on
top of CAN and help control the flow of messages and data on the network. Higher Level Protocols, or
HLPs, are used in CAN systems to perform functions such as system startup procedures, error
checking, connection and status monitoring and other administrative tasks.

Using an HLP may involve a CAN node having to send messages asking to be able to speak to another
node, and requiring messages to be sent back agreeing to the communication before the real
communication can begin. Such systems may seem like a major overhead when you are learning to
send CAN messages, but once you understand CAN messages then your mind will automatically start
to look for ways to error check and monitor the system. HLPs are the result of this natural progression.

HLPs are the glue that helps keep the system ticking over nicely. For this reason large scale systems
will most likely use a HLP. One problem with HLPs is the amount of them — over forty already. Which
HLP you use would most likely depend on the company you work for, or the products you deal with.

HLPs are beyond the scope of this course. The diversity makes it difficult to deal with them in detail.
And the size and complexity of code needed for a HLP is too much for most basic microcontroller
systems to handle. However, if you wish to look into HLPs and how they are used you can find
documentation on various CAN HLPs, such as CANOpen, on the Kvaser site www.kvaser.com.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

http://www.kvaser.com/

1d 1 /X
l I I CAN Bus Training — Course Notes

3 CAN training solution

This course is based around a CAN training solution that is set up as a four node network. This
provides a digital input node (switches), a digital output node (lights) and an analogue input node
(sensors) together with a monitoring/control node (the dashboard). These four nodes should help you
gain an understanding of CAN network tasks within, but not limited to, an automotive context. Not all
nodes are required for every task, and for some tasks you may need to reconfigure some of the nodes.
However for general training, and to teach the principles the four node network is ideal. A fifth
connection point is available, which is used in conjunction with the Kvaser CAN Analyzer to monitor
network traffic.

BLACK ORANGE BLACK‘ \ RED I ORANGE

Figure 3.1 The CAN training solution

The CAN training solution consists of backplane panels with a node on each panel. The power for the
panels can be derived from a single PSU attached to one of the programmer boards and then the VPWR
and GND signals looped together as shown above. Only one USB cable is needed as each node
requires programming separately. The USB cable can be connected to any of the nodes for
programming. However, a second USB port on the PC is needed for the CAN Analyzer.

Important note: Information presented here is correct at the time this document was produced. Please
check the Matrix web site www.matrixtsl.com for the latest E-blocks2 documentation.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

http://www.matrixtsl.com/

1d 17X
l I I CAN Bus Training — Course Notes

3.1 The CAN board

I BLD140-1
CAN Bus Board
d

W . MATRIXTSL . COM
fmm3 Copuright MatriixTSL 2917

vim | S
e L!J ;!} ll

T!—ansc] EVE(‘ Termi na'l: ion

Figure 3.2 The E-blocks2 BL0140 CAN board

A multiway connector is used here to connect the CAN controller to the upstream microcontroller. The
Transceiver switch should be set to EXT and the Termination switch set to ON for Nodes 1 and 4, and
OFF for Nodes 2 and 3. The double screw terminal socket is used to connect the node to the CAN
network.

Two features that are specific to this board, and may not be available on other systems, are the two
LED’s and the three switches. The LED’s can be configured as general outputs or as buffer state
indicators. The switches can be configured as general inputs or as CAN buffer activation switches.
This is dealt with later on in the course.

3.1.1 CAN faults board

The CAN faults board fulfils three
functions: firstly it acts as a point
where the Kvaser analyser can be
attached to the CAN bus using the
D-type connector on the CAN
faults board, secondly it allows you
to insert a number of faults onto the
CAN bus, and thirdly it allows
oscilloscope probes to be easily
attached to the CAN high and CAN
low lines using test pins TP 1 to
TP4. The switches marked F1 to F8
allow each of the CAN lines to be
placed in four separate fault
conditions: short circuit to 5V, short circuit to ground, open circuit and partlal open circuit. The
potentiometers RV1 and RV2 allow you to vary the partial open circuit resistance. The circuit of the
CAN faults board is available in the technical datasheet of the CAN faults board.

® 2 i
5

l

ik

3.1.2 Installation

1. Install Flowcode
. Check for any updates to Flowcode using the Help menu item “Check for updates”

3. The CANLeaf analyzer supplied as part of the CAN solution requires a USB Driver to be
installed for it to function correctly.
See the Kvaser folder on the accompanying CD for instructions and driver files.
IMPORTANT — Do not plug the USB CANLeaf analyzer in until asked to do so by the Install
routine.

4. The Kvaser analyzer requires the CANKing software to be installed. A copy of this is on the
CD supplied with the CAN training solution.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

IMPORTANT — CANKing needs to be installed before the Kvaser analyzer or the CAN
Analyzer may not be recognized correctly.

3.2 Setting up the CAN system

The basic CAN node we use here consists of either a PIC or Arduino based processor, with an BL0140
CAN board attached.

3.2.1 Setting up the CAN nodes
The CAN solution consists of 4 nodes, plus an attachment node for the Kvaser CAN analyzer:

Node 1) Monitoring and Display control node
Node 2) Input switch node
Node 3) Output display node
Node 4) Analogue Sensor node.
Fitted with sensors: Light (socket 0,1), Rotary (socket 2,3) and Temperature (socket 4,5)

Power Supply

i
(] i

Figure 3.3 CAN system — wiring of the power connections

3.2.2 E-Blocks2 board configurations

PIC BL0011 Arduino BL0055
Port A Port B Port C A0-5 DO0-7 D8-13
Node 1 BLO0169 BLO0140 BL0169 BL0140
Node 2 BLO145 BL0140 BL0145 BL0140
Node 3 BLO167 BLO0140 BLO167 BLO0140
Node 4 BLO0129 BLO0140 BLO0129 BL0140

3.2.3 Testing the CAN system

Set up the CAN system with the panels powered up, and the Kvaser analyzer attached and connected to
the PC. As supplied the CANH (CAN High) line has a blue wire, and the CANL (CAN Low) line has a
yellow wire (however it’s always best to check just to be on the safe side).

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

Nodes 1 and 4 are End Nodes. Ensure that the Termination switch is set to ON. For Nodes 2 and 3 the
Termination switch is set to OFF.

The test programs are available in Flowcode format and can be compiled and downloaded to the
appropriate CAN nodes

Node 1 — LCD display and low fuel warning
Node 2 — brake pedal switch

Node 3 — brake light

Node 4 — fuel sensor board

Once the four nodes have been programmed you can test Node 1 and Node 4 by moving the sensor
rotary and watching for a corresponding change on the Node 1 display. Nodes 2 and 3 can be checked
by pressing push switch 0 on Node 2 and watching for a signal on LED 0 on Node 3.

3.3 Testing your programs

Because CAN requires two nodes to be useful, and hence two separate programs running at the same
time, we can’t simulate them in Flowcode. To get around this problem we need to use some kind of
analyzer that plugs into the CAN network and monitors the messages sent.

In order for you to be able to monitor and test your programs we have included the Kvaser CANLeaf
analyzer in our Solutions packs. The Kvaser CAN analyzer can be plugged into our CAN network at
the Analyzer node and connects to a PC via USB to allow you to monitor the network.

When testing your CAN system make sure that the switches on the EB048 CAN faults board are in the
Normal position.

3.4 Setting up the Kvaser CANLeaf analyzer

The Kvaser CAN analyzer comes with set up instructions, documentation and software on the
accompanying Kvaser CD. Please refer to the provided documentation for detail on installing and
setting up the software.

3.4.1 Using the Kvaser CANLeaf analyzer

Connect the CANLeaf analyzer to the Kvaser analyzer node with the channel 1 D type connector.
Connect the analyzer to the PC with the USB cable connector.

The CAN analyzer program is called CANKing and should be in your Programs menu. Open
CANKing.

The main two parts we are interested in right now are the Start and Pause buttons and the Message
screen. The Start and pause buttons do as they say, they allow you to start pause and restart the
analysis.

The Output Window displays all the messages on the CAN network.

The Message 1d, data length, data items, time sent and other bits of information are noted. This can
help you track down problems in your code due to missing data, wrong ID’s etc., or to check that a
node is actually getting the right information sent to it if it is not responding correctly. You can also
insert custom messages onto the network for testing and debugging. The analyzer makes life much
easier and should be used as a matter of course when programming.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

CAMKing for Windows - [canking.wct]
File Wiew Messages Ophions window Help

= = A |
I & Output Window =10zl
Ident VR R R e e e e e e Time Dir

1 1 &6 1704_3158 R _:J

1 1 =6 1705 319 R

1 1 =6 1706 320 R

1 1 =6 1707_321 R

1 1 =6 1708_ 321 R

1 1 =6 1709 322 R

1 1 56 1710323 R

1 1 56 1711.324 R

1 1 56 1712325 R

1 1 56 1713326 R

1 1 56 1714.327 R

1 1 =6 1715327 R

1 1 =6 1716_328 R

1 1 =6 1717_329 R

1 1 =6 1718_ 330 R

1 1 =6 1719_331 R
= 1 1 &6 1720332 R -
1 | 3

Figure 3.4 The CANKing output window

3.4.2 Analyzer network settings

In order to get the Analyzer working correctly on the network we need to set up the bus parameters. If
you use the suggested setting for the CAN component these should match up already. If however you
need to change them for any reason they are on the Bus Parameters tab of the CAN controller window.

7 CAN Controller \Z||:,E| I CAM Controller T CAN Controller E]|:,E|

Eus Statistics BUs Parameters } H{u Filters] Bus Statistics | Bus Parameters] HJW Filkers] Bus Statistics } Bus Parameters HiW Filters 1
Bus Load Standard (11-bit Envelopes) messages
AN Chamnel: [Kvaser LeaF Light H5 #0 (Channe v | IS & accept Al Use Mask and Cods
W Exclusive Total Per Second € Qverrun " Reject Al Mask: 40
R¥ messages: 0 a
TH messages: O il Code: El
a‘é Clear B! set |
Bus Speed: 125,000 | kbit)s
Sampling Point: ’_62.5 . 1 ir Bus Parameters
@ —te Channel: Kvaser Leaf Light HS #0 {Channel 0} Extended (29-bit Envelopes) messages
ST 1| Suggest... Settings: 125,000 kbitys (Excly (¢ Accept Al "~ Use Mask and Code

. (=8, S1=5, 533, SP=f3 5% -
Bit timing: =8, 51=5, 52=3, SP=62.5%, S]tW=1 r Reject ol T w0

Driver Mode: Mormal =2
: a
B st Code $

@ On Bus
o apply ‘ Reset Clock ‘

3 Error Passive
K G0 Off Bus | (3 off Bus

Figure 3.5 CAN controller set-up dialogue

Statistical details and current Bus status are contained on the Bus Statistics page; along with the On/Off
Bus connection buttons (see Fig. 3.5). The standard settings used by CANKing work with the
suggested settings option for the Matrix CAN board are:

CAN Channel: Select the USB CANLeaf options

Exclusive: On

Bus speed: 125 kbps
Sampling Point: 62.5%
SIW: 1

Driver mode: Normal

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

4 The Matrix CAN implementation

4.1 The physical layer

The physical layer used in the Matrix CAN system comes in the form of a twisted wire pair, ending in
termination resistors. The resistors are added to the ends to help prevent signal loss or interference. The
CAN board has a CANH (CAN High Line) and a CANL (CAN Low line) terminal socket which is
used to connect the node to the network. As supplied a blue wire is used for CAN High, and a Yellow
wire is used for CAN Low. This wire color code is not obligatory, you can use your own color code if
you already one set up, but you must wire CANH to CANH and CANL to CANL when wiring up
connections.

Termination resistors are set by means of a Jumper — J. Move the jumper to the END NODE box
position to set the termination resistor for the nodes at the ends of the network.

The board uses both a CAN Controller (MCP2515) and a CAN Transceiver (MCP2551). The CAN
controller uses the SPI™ bus to configure the CAN controller for transmitting and receiving CAN
information. Information sent and received is stored is a series of buffers. Three transmit buffers and
two receive buffers are used to store the data. Note that these buffers are part of our implementation of
a physical layer for CAN and are not a part of the CAN specification itself.

4.2 The Flowcode CAN component

The Flowcode CAN component uses a series of properties and macros to provide CAN messaging in
Flowcode. The properties are used to set up defaults both general, such as baud rate and sample point,
and CAN message data, such as Message ID’s and default data. The macros allow the user to initialize
the CAN system and to send and receive data. Macros allow the user to edit the main parts of the CAN
message, such as Message ID and data sent. Other parts of the CAN message not related to data
transmission, such as ACK bits and bit stuffing are handled behind the scenes automatically.

The CAN component can be found in the Comms section of the Components Libraries Toolbar

[BERVE
Edit View Command lcans Components Libraries User Macros Debug Build W

Q * H D=y 7 E% &

Search Favourites [Inputs Outputs Displays Sensors Storage DSP Comms Hardware APl Runtime Creation

Drag to 20/30 panels
i} Comms: Interface -

Project Explorer oiowiiiiimimiiiiit w X Main (Flow) = F——
-l CAN (Internal, MCP2515)
worx{d = T NE B ‘ 15718 12C Master

cer - CAN component icon

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1ld rifX

CAN Bus Training — Course Notes

Details of the macros and properties of the Flowcode CAN component are contained in the CAN
component help file. The settings shown in Figs. 4.1 to 4.4 and listed in sections 4.3 to 4.5 are used for
all projects in this course unless specifically stated in the instructions for that task.

Properties - 1 X

CAMO

-

i . -
o Properties 4-\:_|-DIF'05|t|ur1 D::DMacrns

= Component

----- & Handle

e TypE

I= Properties
Channel
Controller Osc
Bus Rate

Sync Jump Width
Sample Point

ID Type
Connections

- SPT

----- £ CHAMNMEL

-5 000 D u

----- £ Prescale

----- £ Sample Point
Bl TX Buffer 0

----- Message ID

----- Length

..... D?
- & TX Buffer 1
- & TX Buffer 2
- RX Buffer 0
-8 Settings
g% RX Buffer 1
-8 Settings
-~/ Simulation
o Label

ITIITIITI
[SLE Ll gy . |

]

m

CP2793-02 CAN Bus Training

CAND
CAM (Internal, MCP...

External -
20MHz -
125 -
1 -
60% -

Standard Only -

Channel 1 -
$PORTC.3
$PORTC.3 -
$PORTC.4
$PORTC.4 -
$PORTC.S
$PORTC.S -
£PORTC.2
Fosc/16 -
End -

101
3
85
170

L s Y s e Y s

Accept Al -
Accept Al -

CAM Bus

CAN Component Properties

The CAN component properties can
be found on the ‘Properties Panel’
when the CAN component is
selected / highlighted.

Properties
The Properties section allows you to
set the CAN configuration settings.

Connections

The Connections section allows you
to set the SPI settings for the CAN.
For the PIC is Port C, for
Arduino/AVR is Port B.

TX Buffer

The 3 TX Buffer sections allow you to
set the default details for the three
transmit buffers (7X Buffer 0 to TX
Buffer 2) used in the CAN component.
Unless modified in the program by
macros, these default settings will be
the Message ID values and data (D0
to D7) values sent

RX Buffer

The 2 RX Buffer sections allow you to
set Masks and Filters to process and
select Message IDs to be received
(more on this later). As well as the
ability to configure the Settings of
each buffer individually.

4.3 Target microcontroller
devices

This course was written using PIC and
AVR microcontroller device. If you
wish to use other microcontroller
devices you will need to adapt the
settings, programs and instructions to
match the new device.

Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

4.4 CAN component settings

The required settings are as follows:

Channel: External
Controller Osc: 20MHz

Bus rate: 125 (kbps)
Sample point: 60%

SJW: 1

ID Type: Standard Only
Channel: Channel 1

Chip Select: Port pin 2

Note: Ensure the Bus Rate is set to 125, as it is set to 500 by default.
4.5 Flowcode Configuration settings

PIC Target: BLOO11
Arduino Target: BLO0055

4.6 PIC development board/E-blocks2 settings

Voltage Selector: 5V

4.7 CAN Initialise macro

The CAN component needs to be initialized before you can use it in your program.
To initialize the CAN component place the CAN “Initialise” macro in your program before any other
CAN macros are used. Ideally it should be placed right at the start of the program.

|Initialise the CAMN camponent

<|:an|]::|nitialiseﬂ [j

CP2793-02 CAN Bus Training , Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

5 Basic CAN signals

CAN is about both sending signals from nodes onto the network, and about receiving signals from the
network and acting upon those signals if they are meant for that node. The two tasks are separate
processes. A node can send a signal or it can receive a signal it does not need to do both. However it
can do both, which adds to the flexibility of CAN systems.

A basic CAN system requires a Node that can send signals and a Node that can receive signals. There
can be more nodes, either sending or receiving signals, but a minimum of one sending node and one
receiving node are required for communication.

As mentioned earlier the CAN signals are sent and received using our implementation of the Physical
layer — CAN specifies the message leaving the lower physical layer for us to implement. In our system
we have TX Transmit Buffers and RX Receive Buffers that are used to store the data for sending, or for
us to examine when it is received. Each Message is sent with a Message ID value which can be
checked for by other nodes and acted upon if it matches a list of ID’s to be accepted.

5.1 Implementing basic CAN signals in Flowcode

5.1.1 Initializing the CAN component

Whatever function a node has — sending, receiving or a mixture of both, it requires the CAN
component to be initialized in order for the component to work.

Add an /nitialise macro to your program, preferably at the start where it can be checked for quickly.
Basic CAN signals require two separate nodes to set up — a sending node and a receiving node.

5.1.2 Sending nodes

The CAN component’s default settings for the three TX transmit buffers are all set to 0. This means
that they need configuring in order to function. Once configured, the messages can be sent with the
SendBuffer macro. The Buffer parameter refers to the TX0-TX2 buffer to be sent, and hence can be set
from 0 to 2 respectively. Below is the TX Buffer properties which are used in the example files. For
TX Buffer 0, the Message ID is set to 688 and the Length is set to 2, which determines how many bytes
of data will be sent — 85, 170, 0, 0, 0. We will learn more about Message IDs and data later on. For now
just remember that this data will be sent with this Message ID when TX Buffer 0 is sent.

=B TX Buffer 0

Z, Messa... 688
-~ Length 2
~Z Do 85
- D1 170
-7 02
7 D3
- F D4

Z D5
-7 D6
7 D7
=B TX Buffer 1
Messa...

coocooo

=1
=

-Z, Length
~Z Do
- Z Dl

Z, D2
-7 D3
-Z D4
- F D5
-Z D6
- Z D7
=& TX Buffer 2
Z, Messa...

(SR RNANY BY- SCNRY-. TN

20
-, Length
- Z, DO
Z D1

Z 02
- FZ, D3
- Z D4
7 D5

Z 06
—F, D7

cooocoooo o

Figure 5.1 Sending node settings

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

5.1.3 Receiving nodes

The receiving node needs to be set up to accept incoming messages in order to function. By default the
RX Receive settings are set to reject all messages. To alter this to go to the RX Buffer section on the
‘Properties Panel” and set the RX Buffer 0 Buffer settings to ‘Use Mask and Filter’, this accepts a set of
specific messages. Note for the settings specified in the example files set the Filter 0 property to ‘100°.
When using the example settings, ensure that you change the RX Buffer 1 settings to ‘Accept All’.

=-B& RX Buffer 0
----- % Settings e'e -

..... MHEk 22 V3 an er

----- 7 Fiterg | ~ecet Al

----- Z, Fiter 1 2047

=-B& RX Buffer 1

----- [£] settings Accept Al |
----- Z, Mask 2047

----- Z, Fiter2 704

----- Z, Fiter 3 2047

----- Z, Fiter 4 2047
----- Z, Fiter 5 2047

Figure 5.2 Receiving node settings

The node will now accept all transmissions on that particular buffer regardless of who sent them.

You can check for arriving messages with the CheckRx macro. The buffer parameter selects which
receive buffer to check. In this case we need to check buffer 0 for RX Buffer 0. If a message has
arrived CheckRx will return a non-zero value. If we have a non-zero return value the node can then
respond to the message by performing whatever functions it has been programmed to do.

5.2 Using basic CAN signals

A simple system can be set up using basic CAN signals. However the system is restricted to only one
activating signal, and only one response. More than one activating node can be present that can send an
activating signal but as the receiving node accepts all signals it does not matter who sends the signal. In
a similar way, any node set to receive all signals will react to the message sent. It does not matter who
sent the signal, or who to, only that a signal was sent. This allows us to have more than one node
respond to the same signal, but as they all accept all messages the response will be the same for any
signals sent.

This method of communicating is very basic. All signals are reacted to in the same way and there is no
way to prevent signals not intended for the receiving node being accepted as well, thus generating false
events. Although this system can work for a small single purpose network, e.g. for a brake/brake light
system, such a system would be unlikely to be used outside of a learning environment. The CAN
system as described here is simply not robust enough for practical use. Some method must be used to
make the nodes more selective of what messages they send or receive. This will be covered in the next
section, dealing with Message ID’s.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

6 CAN Demonstrations

The following three demonstrations illustrate CAN in action, and some of the main uses of CAN.
These demos can be used to give students a basic understanding of CAN systems prior to the CAN
programming examples.

Also the demos can used to illustrate concepts such as message monitoring, start-up scans and
diagnostic tests for students who may be working with CAN systems, but are not required to create or
program CAN systems.

e DMOI1 (6.1) illustrates a start-up scan with basic system error checking.
Checking that a node is present on the system is the first step in examining the problem.
e DMO02 (6.2) is a basic message monitoring example.
Message monitoring is a standard method of fault diagnosis.
Monitoring the message traffic can help to identify which node or nodes have faults in them.
e DMO3 (6.3) is a node specific monitoring and test program.
This demo illustrates the use of diagnostic tests to examine a particular node to diagnose the
fault.

Power Supply

Figure 6.1 CAN System — System overview

CAN Node 1 — Main control panel
CAN Node 2 — Switch panel

CAN Node 3 — LED panel

CAN Node 4 — Sensor panel

Flowcode FCFX files are provided so that advanced users can see and work the code if required.
For simple demonstrations the Nodes can be pre-programmed to allow students to examine the nodes
straight away.

Note:

For these Demos only the Message ID HI byte is used in order to simplify the mathematics involved.
It is assumed that all Message ID LO bytes are identical as so can be safely ignored for these demos.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

6.1 DMO1 — Start-up scan

6.1.1 Aim

To demonstrate an initial start-up scan that checks the system components are all connected and
working, and how this can help in automotive diagnostics.

6.1.2 Resources:

This task uses 5 programs:

DMO1 N1 —Node 1 program (Main control panel program)
DMO1 N2 — Node 2 program (Brake switch)

DMO1 N3 — Node 3 program (Brake lights)

DMO1 N4 — Node 4 program (Fuel sensor)

DMO1 NX — program for non-functioning node

Programs are supplied in FCFX file format so that users can view and modify the flowchart program.

(Note: For the purposes of this exercise the programs only contain code for the start-up scan
procedure.)

6.1.3 Part 1: Running the scan

Load programs DM01_N1 - DMO01 N4 into nodes 1-4 respectively.

Upon reset of the Node 1 control panel node the Scan program will commence.

The LCD will display “Starting scan”

Next Node N2 (Brake switches etc.) will be checked.

Once Node N2 has been detected “N2 — Brake Sw” and “Present” will be displayed.
Next Node N3 (Brake Lights) will be checked.

Next Node N3 (Fuel Sensor) will be checked.

Finally the LCD will display the overall scan result.

In this case “All systems on” to show that all systems responded correctly.

PRI WD =

6.1.4 What is happening?
The scan works on a simple message/response system.

The whole system is broken up into 4 separate units, called Nodes, which function independently. They
are all however connected to the CAN bus, which allows them to listen for signals on the CAN bus and
to send signals as well.

The Control panel node - N1 - sends a sequence of messages with a pre-set ID number, to the other
nodes in the system.

The messages are not sent to a specific node. They are simply put on the CAN bus for all the nodes to
listen for.

The other nodes on the system are listening for messages. They have been set up to look at the ID of
the message and only respond to one specific ID message. When a node spots a message it can respond
to it sends a message of its own i.e. it responds to the initial message.

The control node N1 node then waits for this response. If it does not get one in a set time it records the
node as not present and moves on to the next item to check. If node N1 receives a message it then
knows that that particular node is present on the system.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

6.1.5 Part 2: Picking up errors.

Send the program DM01 NX to one or more of nodes 2-4 (e.g. Node 2).

Press reset on Node N1 to rerun the scan.

Note what happens when the scan reaches the node(s) with DM01 NX in them.

The program will pause for a bit whilst it is looking for the node. After a short while it will

assume the lack of a response means that the node is not connected or not working and will

report the node as “Not present”.

5. Once all nodes have been scanned for the LCD will display a “Warning” message and then list
the Nodes that it did not find e.g. “N2”.

6. Next, send the DM01_ NX program to nodes N2-N4.

Press reset to run the scan again.

8. Once it is complete it will display an “Error” message and “No systems found” to inform you

of the problem.

bl

=~

6.1.6 What is happening?

The program DM01_NX effectively disables the node mimicking a non-functioning ECU which does
not respond to the ‘scan’ from Node N1.

6.1.7 Limitations

The start-up scan simply checks that a node is present: it does not prove that all parts of the node circuit
are working correctly. For example a fuel node with a broken sensor will be present, but not working.
However just knowing that a node is or isn’t present can help solve some problems in automotive
networks.

Note that we have made separate programs here to illustrate how the start up scan in a car can help
check the functionality of the car before a journey starts. In practice each sensor would have a routine
like this incorporated into its main program.

6.1.8 How does this help me?

If a system (node) is not attached or not working it can’t be used. A start-up scan is useful for this basic
level of diagnostics. Are all the systems present and accounted for? Finding out that Node N2 is not
responding to your scan means that you can then start checking Node N2 for faults.

Whilst we have only four simple nodes here imagine a more complex system with a hundred or more
nodes. One simple start-up diagnostic program can save you hours checking with a multi-meter.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

6.2 DMO02 - CAN monitor

6.2.1 Aim

e To monitor the messages and data being sent on the CAN bus.
e To display the Node and function, the Message ID and the Data.

6.2.2 Resources:

This task contains 5 programs:

DMO02 N1 —Node 1 program (Main control panel program)
DMO02 N2 — Node 2 program (Switches node)

DMO02 N3 — Node 3 program (Lights node)

DMO02 N4 — Node 4 program (sensor node)

DMO02 NX — program for unknown messages

Programs are supplied in FCFX file format so that users can view and modify the code.

6.2.3 Part 1: Message monitoring

—_—

Load programs DM02 N1 — DMO02_ N4 into nodes 1-4 as appropriate.

2. Upon reset of the Node 1 control panel node the Monitoring program will commence.

3. When a message is received the ID is checked against a list of known ID’s and the Node and
function displayed on the top line of the LCD.

4. On the next line of the LCD the Message ID and the Data is displayed.

6.2.4 Signals sent

e The Fuel sensor on Node 4 automatically sends out fuel level signals every few seconds.
The switches on Node 2 send messages when pressed: data value 255 when pressed and data
value 0 when released.

e Node 3 lights up the LEDs when appropriate, but does not send out any signals.

6.2.5 What is happening?

The control panel listens for any message and displays the Message ID and data value on the LCD
display. The Message ID is also checked against a list of known Message ID’s to get the Node and
function information, which is also displayed. Messages which are not on the list of known nodes and
functions are listed as “NX — Unknown”.

Some messages are sent automatically, such as the Fuel level reading — this ECU has a program inside
it which sends the messages at regular intervals. Others are sent as the response to an action — such as
pressing or releasing the brake switch. Some nodes — e.g. Node 3, may never actually send messages: it
only listens for messages and processes them. Note that this is an example of a fully functioning Node
which does not create any messages on the CAN bus.

Note that when a switch is pressed a CAN message is generated, and when the switch is released a
different message is generated. We could send a continuous signal until the switch was released, but
that would swamp the CAN bus with messages. If a signal was sent just for pressing a switch we would
never know when it was released. If the same data value was sent we could get confused as to when it
was turned on and when it was turned off. So we send different data values to distinguish the ‘switch
on’ and ‘switch off” transitions. You could also use different messages with different Message 1Ds
instead. The important thing here is being to be able to differentiate the different signal states.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

6.2.6 Part2: Unknown messages.

1. Send the program DM02_ NX to one of the nodes 2-4 (e.g. Node 2).

2. When a message is received from this node it does not match any of the known nodes and
functions.

3. In this case the node is reported as “NX — Unknown”

4. The Message ID and any data is shown on the second line of the LCD.

Unknown messages would be very rare in a new automotive system but can occur under certain
circumstances. For example where a vehicle has been damaged, a new ECU may be fitted which has a
later version of software than the original vehicle. This new CAN ECU may have slightly different
messages, or may generate new messages. Because of this automotive technicians may be asked to
download new software to some parts of the vehicle to cope with engineering changes that have
occurred as the design has changed.

6.2.7 Limitations

The Message IDs are checked against a list of known nodes and their functions contained in Node N1.
Each message only contains an ID and some data — a programmer has made some kind of look up table
in Node N1 that relates this to the function of the node the message is from. A message does not tell us
where it came from. It only contains the Message ID and the data. If a message arrives with a Message
ID that is in the list it will be reported as being that node and function regardless of whether it is or not.
This is a very important point to appreciate. For example if you programmed a temperature sensor ECU
with the program for a fuel sensor, then it is possible that you could end up with a fuels sensor level
indicator which is actually governed by the engine block temperature!

Due to LCD display size constraints we can only display the first item of Data from the message.
However the CAN nodes can send up to eight items of data with each message.

6.2.8 How does this help me?

The CAN bus is a message system. It carries the messages produced by nodes along the system for
other nodes to listen in to and react to when needed. The CAN monitor program allows us to see this
information visually.

What these messages are and what data they carry is of prime importance to us. Wrong or missing data
and messages are prime indicators of problems. If the brake node is not sending messages when
pressed we know there is something wrong with the brake node. If it is sending data but the brake light
is not coming on, then we know it is a problem with the brake light node. Just monitoring for brake
messages can tell us where the problem lies: at the source of the messages, or at the destination.

By monitoring the messages sent and the data values, and what causes signals and what reacts we can
start to diagnose problems, and narrow down what individual nodes need further diagnostic tests. If a
unit is upgraded or modified we can also monitor its messages and data to ensure it is working
correctly.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

6.3 DMO3 — Sensor Diagnostic program

6.3.1 Aim

To monitor the messages and data being sent on the CAN bus.
To display the Node and function, the Message ID and the Data.

6.3.2 Resources:

PIC BL0011 Arduino BL0055
Port A Port B Port C A0-5 DO0-7 D8-13
Node 1 BLO0169 BLO0145 BLO0140 BLO0169 BLO145 BLO0140
Node 2 BLO145 BLO0140 BLO0145 BL0140
Node 3 BLO167 BLO0140 BLO167 BL0140
Node 4 BL0129 BLO0140 BL0129 BL0140

Node 4 BL0129 to be fitted with sensors: Light (socket 1, pins 0,1), Rotary (socket 2, pins 2,3) and
Temperature (socket 3, pins 4,5)

Programs are supplied in both HEX file format for immediate use and FCFX file format so that users
can view and modify the code.

6.3.3 Part 1: Sensor monitoring

—_—

Load programs DM03 N1 to DM03 N4 into nodes 1-4 respectively.

2. Upon reset of the Node 1 control panel node the Start-up scan program will commence. This

is detailed in DMO1

The Start-up scan is used to verify that the Sensor node is present.

4. Once the scan has been completed the program then monitors and displays the sensor values.
You should be able to see a change in the value displayed by altering the light level,
temperature, and also by altering the variable resistor on the sensor board which is used to
mimic fuel level.

5. Temperature, Fuel level and Light levels are monitored, with the sensor values displayed on
the LCD below the appropriate heading.

6. The data assumes an initial value of zero, and is updated every time a message arrives bearing

data from the sensor node on the status of the sensors.

(98]

6.3.4 What is happening?

The control panel listens for sensor node messages and records the data received from them. The data
in this case is a number between 0 and 255. In practice a separate program on the instrument console
would be used to convert this data into a meaningful quantity for human beings; for example fuel
remaining.

In this set of programs the data received is displayed to allow a technician to monitor the sensor values.
Various problems will cause distinct readings that can be used to predict what faults have occurred.

6.3.5 Limitations

The sensor monitor program only shows the data values and does not provide diagnostic error
messages for all situations. Given the small system here it is not a problem, but more complex systems
may require better internal error checking procedures and diagnostic messages to be incorporated.
However as you will see in the next few exercises, the CAN system can greatly assist in finding faults
with nodes.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

6.3.6 Part 2: Potential problems
The following set of Errors show various diagnostic tests in action.

6.3.7 Error 1: Node 4 has no power.

Set up the programs as in part 1

Unplug the power to the sensor node.

Run the diagnostic program

The start-up scan will report that N4, the Sensor node, was not present indicating a problem
with that unit.

5. The monitoring values will all be zero and will not change.

bl el N

This is the first test — checking that the node is actually there. If this test indicates the sensor node is not
present then we know that the fault is affecting the whole node and the error is likely to be failure of
the main ECU, loss of power or ground.

6.3.8 Error 2: The sensors have no power.

1. Set up the programs as in part 1

Remove power from the sensor board (not the whole node, just the sensor board) by

unscrewing the power screw terminal and removing the red wire.

Run the diagnostic program

The start-up scan will report that N4, the Sensor node, is present.

5. The monitoring values will all be stuck at whatever default value they have and will not
change indicating that the sensors are not updating.

6. Stimulating the sensors produces no change in the reading.

B w

Here the operation of the sensor node, N4, is fine. However there is a fault with part of the sensor
circuit that the sensor node cannot detect. We know the node is working because we are getting
readings: because none of the sensor readings change when we stimulate the sensors, we know the fault
must be with the sensor board as a whole.

6.3.9 Error 3: Breakdown mid journey

Set up the programs as in part 1

Run the diagnostic program

Monitor the sensor values to see that they change and update as the sensors are stimulated.
Unplug the power to the sensor node.

No more messages will be sent meaning that the sensor data values will not get updated.
The readings will appear to jam. Stimulating the sensors will not change the sensor values.

AU S

Here we are simulating a breakdown, where the power loss is after start-up so we don’t get the “Not
present” warning that would show us the problem then. This could be the result where there is an
intermittent fault in the power line to a sensor ECU: the system checks out on start up, but fails part
way through the journey.

This is a tricky situation as ideally we would like to know when a system failed and is not updating.
There are a number of ways we could check for this.

We could for instance have a timeout after which the sensor readings go to
We could also re-run the start-up scan for the entire system every few minutes in the journey to check
all nodes are present.

[IAN13

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

7 Worked Example 1: Brake!!!!

For this first example we will just send a message and see if we can receive it on the other node,
reacting in some way to show that it has arrived.

7.1 Objective

Create a CAN network that turns on the brake light when the brake pedal is pressed. The brake pedal is
on switch 0 on Node 2, and the brake rear light is on LED 0 on Node 3.

7.2 Part 1: The basic programs

For this program we will use the default settings.

Note: You will need to configure the microcontroller development board for the correct
microcontroller device.

7.2.1 The Send signal

1. On the Flowchart add a ‘Call Macro’ icon and set it to /nitialise. This is an important macro
that is needed for the CAN component to work. This macro is best added at or near the start
for ease of reference.

2. Add aloop so that the program will run continuously.

3. Add an input icon and get the value of switch DO, the brake pedal, into a variable called
BRAKE.

4. Add a decision icon set to BRAKE > 0.

5. On the YES branch add a further macro. Open the macro Properties Panel and select the
SendBuffer macro. The macro takes one parameter — Buffer. We will discuss buffers in more
detail later. For now set Buffer to ‘0.

6. Add a short delay (Delay icon set to 100ms) just before the end of the loop.

7. Save the program as CAN Example 01 Send.fcfx.

Fig.7.1 shows the Flowcode implementation. The program is now ready to compile and download to a
CAN node. We now have a working CAN node. When we press switch DO it will send a message on
Buffer 0.

7.2.2 The receive signal

We have a message — now we need a node that can react to it!

1. Start a second program, once again with the appropriate microcontroller.

Add a CAN Initialise macro and a loop.

Inside the loop add the macro ReadRx and set the parameter, Buffer, to ‘0’ to match that of the
message we sent in the first program.

Create a MESSAGE variable and use this for the Return value.

When a message gets sent to buffer 0 ReadRx will return a non-zero value.

So if we follow the Read Rx macro with a decision icon we can then react to the message.
Add the decision icon and set it to MESSAGE > 0.

On the YES loop add an output icon so that we can react to the message.

9. We will set this to turn on LED 0 — the brake light.

10. On the NO loop add an output icon to turn off DO, so that it is not on permanently.

11. Add a short delay (Delay icon set to 100 ms) just before the end of the loop.

12. Save the program as CAN Example 01 Receive.fcfx.

bl

PN

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1ld rifX

BEGIN

Call Macro

cani::Initializef] U

Input

CAN Bus Training — Course Notes

D0 ||
BRAKE

Decision

I BRAKE > 07 i

es

Mo

Call Macro

Delay

END

Figure 7.1 Send signal flowchart

BEGIM '

Call Macro

a B canll::Initialise(] [j

Loop
"/ hile
1

Call Macm

canl::SendBuffer(0] U

) =1

a H MESSAGE =canl::CheckRx[0] E]

Decizion

IF MESSAGE » 017 i

/’es

Output

H ‘ / G rome

Ma
Output
i
-» PORTD
H}
Delay

[) =1

END

Figure 7.2 Receive signal flowchart

CP2793-02 CAN Bus Training

Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

Having entered the flowcharts you are now ready to compile and download them.

1. Compile and download CAN Example 01 Send.fcfx tothe CAN node with the attached
switches.

2. Compile and download CAN Example 01 Receive.fcfx tothe CAN node with the attached
LED’s.

3. Press switch 0 and, if all went well, LED 0 should light.

7.2.3 Testing the programs
Pressing switch 0 on Node 2, the switches node, should now light up LED 0 on Node 3, the LED node.

To view the network traffic

1. Connect the CANLeaf analyzer to analyzer node on the network.
2. Open CANKing and select the USB CANLeaf device.

7.3 Part 2: A second receive node

Send the receive program CAN Example 01 Receive.fcfx to Node 1. Now when switch DO is
pressed the same LED will light on both Node 1 and Node 3.

Next modify the program to light up LED 1 instead. Save the program as
CAN Example 01 Receive A.fcfx and send the program to Node 3. Now when switch 0 is
pressed different LED’s light up on Node 1 and Node 3.

7.4 Conclusions

This example demonstrates that sending and receiving are not only separate acts, but also that they are
totally independent. Depending on the programs sent to different receiving nodes each node could
respond to the signal in a completely different way.

7.5 Further work

e Consider what would happen if in Part 2 you loaded a program that would send a signal if
switch 1 was pressed. How would the other Nodes be affected?

Modify the send program to send the signal when a switch on Port A is pressed and send the
program to Node 1 to see what happens.

e Ifyou use CANKing to view the network traffic you will notice how many messages there are
and how frequent they are sent. Consider if there is a better way of doing this that will cut
down on the network traffic.

Modify the send and receive programs accordingly to see if you can cut down on the network
traffic generated.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1ld rfX

CAN Bus Training — Course Notes

8 Demonstration 1: Brake!!!

This example shows a simple signal-response system in action, the most basic CAN system possible.

8.1 Setup
PIC BL0011 Arduino BL0055
Port A Port B Port C A0-5 DO0-7 D8-13
Node 1 BL0167 BL0140 BLO167 BL0140
Node 2 BLO0145 BL0140 BLO0145 BLO0140
Node 3 BLO167 BL0140 BLO0167 BL0140

e Switch 0 on Node 2 to mimic the brake pedal action.
LED 0 on Node 3 to mimic the rear brake light action.

LED 0 on Node 1 to mimic the dashboard brake light signal action.

Open up file CAN_Example 01 Send.fcfx in Flowcode and download it to Node 2 (The

Switches node).

Open up file CAN Example 01 Recieve.fcfx in Flowcode and download it to Node 3 (The

LED node).

8.2 Viewing the messages

If you open up CANKIing and view the network traffic you will see a message being sent whenever the
brake pedal is pressed.

8.3 Part 1 - The brake light

When the brake pedal is pressed (Switch 0 on Node 2) the Brake light (LED 0 on Node 3) lights up.
The signal generated by Node 2 (the switches) is picked up by Node 3 (the LED’s) and, as all messages
are accepted, the message is acted upon lighting the LED.

8.4 Part 2 — The dashboard display

Next download the CAN_Example 01 Recieve.fcfx program to Node 1.

Now when the brake pedal is pressed the LED’s on both Node 1 and Node 3 will light up.
We have not altered the signal sent in any way, but both the receiving nodes receive and act upon the

signal.

Next download the CAN_Example 01 Recieve A.fcfx program to Node 3.
This time the same LED lights on Node 1, but a different LED (1) lights on Node 3.

The same signal is sent but acted upon differently by the two receiving nodes.

8.5 Conclusions

This example demonstrates that sending and receiving are not only separate acts, but also that they are
totally independent. Depending on the programs sent to different receiving nodes each node could

respond to the signal in a completely different way.

CP2793-02 CAN Bus Training

Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

8.6 Further work

e Consider what would happen if in Part 2 you loaded a program that would send a signal if
switch A1 was pressed. How would the other Nodes be affected?

e Ifyou use CANKing to view the network traffic you will notice how many messages there are
and how frequent they are sent. You may want to consider if there is a better way of doing this
that will cut down on the network traffic?

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

9 Fault finding in CAN systems

This exercise will allow you to understand how to find faults in CAN bus systems
9.1 Setup

Connect and power up the CAN solution. We will be using Node 1, the display node, to display the
data. We will be using Node 4, the Sensor Node, to send the data.

Open the file CAN_EXAMPLE 04 RECEIVE.FCFX in Flowcode and download it to Node 1 (The
Display node).

Open the file CAN_EXAMPLE 04 SEND.FCFX in Flowcode and download it to Node 4 (The Sensor
node).

The CAN faults board is positioned between Nodes 3 and 4 in the system. Any fault in the CAN bus
will result in the data not being transmitted.

IRMAL

MW

Here is a graphic of the faults board. The screw terminals on the top are market IN and OUT. Of course
CAN bus signals flow in both directions but we will use IN and OUT for convenience. Note that the
CAN analyser socket is connected to the CAN IN lines. Make sure that all the switches are in the
NORMAL position. In this position no faults are inserted. You will be inserting faults into the system
between Nodes 3 and 4. In the example programs signals are being sent from Node 4 to node 1: this
means that the Analyser is on the non-fault side of the CAN bus.

TP1 and TP2 are connected to the CAN-H and CAN-L signals ‘before’ a fault. TP3 and TP4 are
connected to the CAN-H and CAN-L signals ‘after’ a fault.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

9.2 Viewing the messages

If you open up CANKing and view the network traffic you will see messages being sent at regular
intervals. If you vary the potentiometer on the Sensor board on Node 4 you will see on the analyzer
readout that the data portion of the message relates to the potentiometer setting. In this case the
potentiometer value is mimicking the fuel sensor on a petrol tank. Varying the potentiometer will result
in a change in the display on the LCD on Node 1 by indicating how much fuel is in the tank.

e Connect a storage oscilloscope between GND and TP1. You should be able to see the CAN
bus signal.

e Connect a storage oscilloscope between GND and TP2. How does it differ from the first
measurement?

e Make a drawing (approximate) of each signal or print it out. Record timing and voltage levels
so that you can refer to these drawings later.

Remove the CAN-L and CAN-H wires from the ‘IN’ screw terminal connector. The LCD display
should go blank. This is the fault condition: when there is no display then there is a fault on the system.
Note that under partial open circuit fault conditions your CAN bus analyzer may still show data on the
bus even though the LCD is blank: the reason for this is that the CAN interface on Node 1 has a
different interface circuit to the CAN analyzer which is more sensitive.

9.3 Partl1-F1

Move switch F1 into the right hand position.

What happens to the LCD?

Is this a fault?

Use the oscilloscope to view the signals on TP 1 to TP4. What can you see?

Remove power from all nodes. Use a multimeter to measure the resistance between nodes and
complete the table below.

e What kind of fault does F1 represent?

TP1 | TP | TP3 | TP4
2

Resistance to
ground
Resistance to +V
TP1 -
TP2 -
TP3 -
TP4 -

9.4 Part2-F2, F3, F5, F6, F7

Move switch F1 back into the NORMAL position. Repeat the exercise in the section above
individually for fault switches F2, F3, F5, F6, F7. When you do this make sure all switches are in the
NORMAL position except one switch. You should now have a clear understanding of what fault each
switch inserts into the system.

9.5 Partial open circuits

F4 and F8 are used to insert partial open circuits into each CAN bus line. Place all switches in the
NORMAL position. Place switch F4 in the right hand fault position. Using the potentiometer vary the
fault resistance until the system just stops working — the point at which the LCD on Node 1goes blank.
Remove power. Complete the table above again and note the fault resistance. Complete this exercise
again for switch F8. Does the resistance at which the CAN-H and CAN-L lines introduce a fault vary?

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

10 Intermediate CAN Networking

Here we will discuss and explain the core features of CAN networking, and provide examples and
suggested projects for you to train with. By the end of this section you will be able to set up and run a
multiple node CAN network that can respond to a variety of messages. There is a lot to learn here so
you may need to come back to various parts of this section some times to review what you have
learned.

Here we will look at Message ID’s and how we can be selective about which messages to respond to.
We will also look at sending and receiving data. We will examine the general settings, and how they
affect the network.

11 The CAN component

To be able to work with Message ID’s we need to understand the CAN component Properties Panels.
The various tabs on the CAN component properties detail general settings, and the default TX Transmit
and RX Receive buffer settings.

11.1 General Settings

The general settings properties tab contains the main CAN network settings properties.

e Busrate
Bus rate is the connection speed for the node. The node will expect all messages to arrive at
that rate. Messages arriving at too fast a rate or too slow a rate may be sampled incorrectly
leading to erroneous or jumbled messages. All nodes on a network need to be set to the same
Bus rate otherwise communication problems will arise.

e Sample Point
Sample point is the point of the expected signal pulse at which the signal is measured to
determine ifitisa 1 or a 0.
This is normally set to 50%-80% of the signal pulse period.

e Synchronization Jump Width - SJW
Synchronization Jump Width is used to help synchronize CAN nodes.
As CAN does not use a clock it needs to synchronize itself with the transmitter nodes.
SJW is a variable that helps set the maximum amount of timing leeway allowed for
synchronization.
This is used to help data transfer between data nodes on unusually long CAN cables and can
be left as is for most node networks.

The default settings, of the CAN component are as follows: Channel = External, Bus Rate = 500,
Sample Point = 60%, Sync Jump Width = 1, ID Type = Standard Only. In order to use the CAN
analyzer shipped with some of our CAN systems, ensure that the settings are the same for both the
CAN component and the CAN analyzer, as it is required for them to function correctly.

Note: Change the ‘Bus Rate’ from 500’ to ‘125’ to match the settings required for the exercises.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

11.2 Transmit Buffers

Our implementation of the CAN physical layer has three transmit buffers — TX Buffer 0, TX Buffer 1
and TX Buffer 2. Each buffer contains a Message ID and a batch of Data. All three buffers work the
same way. The buffers are used to store the CAN message until it is ready to send. The buffer can be
modified and changed and is not fixed. The default values on the Properties Panels are used unless
programmatic changes are made in which case the changed values are used.

Use the properties panel to set the Message ID’s and data for each of the three buffers, this gives you
the ability to send three predefined messages. Later on we will look at ways to modify these properties
on the fly, but for now we will use the properties panel to set up the messages.

11.2.1 Message ID’s

When a message is put onto the network, the nodes need to know whether to react to the message or
not. In the basic example we simply reacted to the presence of a message regardless. However we can
be selective. Each message sent onto the network has a Message ID number. The nodes can check this
Message 1D number to see if it matches with the list of ID’s it should accept. If it matches the node can
react to the message, if not the message can be disregarded.

If you look at the Properties Panel (see Fig. 10.1) and find the TX Buffer 0 section you will see a
Message ID property. This is the Message ID value sent along with Buffer 0.

=-B& TX Buffer 0
----- 7, Message ID |EH

----- Z, Length 2
----- Z, DO 85
----- Z, D1 170

N
e}
Ln
[N o N o R o Y o Y o

Figure 11.1 Setting the Message ID in the Properties Panel

TX Buffer 1 and TX Buffer 2 also have identical boxes for you to put their Message ID’s in. This
means that we can generate messages with three separate Message ID’s from any particular node by
using just the default buffer properties alone. However, we can have more than one node on a network,
each of which could transmit signals with different Message ID’s — or even the same Message ID’s
depending on the system. From this you can start to grasp the enormous amount of potential messages,
each with their own Message ID that can be sent. Later we will look at ways to change the buffer
Message ID programmatically, giving us even more flexibility than the three default values.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

11.3 Receive Buffers

There are two receive buffers RX Buffer 0 and RX buffer 1 in our implementation of the CAN physical
layer, which store received data. These can be checked to see if they have received any messages.

Receive buffers can be one of the most complex parts of our implementation of CAN to use and
understand. The Filter properties are similar to Message ID’s as the Buffers will react to them. The

advanced mode will be dealt with later in the advanced CAN networking section.

There are 6 Filters in total split between two RX Buffers (0 and 1). RX Buffer has 2 filters available
(Filter O to 1) and RX Buffer has 4 filters available (Filter 2 to 5).

=-F& RX Buffer 0

-----] settings Use Mask and Fiter =]
----- Z, Mask 2047
----- Z, Fitter 0 100
----- Z, Fitter 1 2047
=-E& RX Buffer 1
-----] settings Accept Al |
----- Z, Mask 2047
----- Z, Fitter 2 704
----- Z, Fitter 3 2047
----- Z, Fitter 4 2047
----- Z, Fitter 5 2047

Figure 11.2 RX Buffer Filters and properties

You can set up the simple mode by clicking on the ‘Simple settings’ check box. You can then enter
Message 1D values into the boxes. Messages with these ID’s will be accepted by the RX Buffer. Once a
message has arrived we can check for it with the CheckRX(Buffer) macro. The buffer parameter is used
to indicate which RX Buffer is checked (0 for RX Buffer 0, and 1 for RX Buffer 1). A non-zero return
value indicates that a message has arrived.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

12 Working with Message ID’s

Message ID’s are complex to get to grips with due to the mathematics involved, although careful
selection of Message ID’s can simplify the problem greatly. There are two parts to consider — how to
read in and differentiate Message ID’s and how to change pre-set ID’s for outgoing messages.

12.1 Checking Message ID’s

You can check for messages with CheckRx(Buffer), which returns a non-zero value when a message is
received. You can interrogate a message to discover what the Message ID is. However Message ID’s
can be up to a value of 2047 (hex 0x7FF), whilst Flowcode and the microcontroller only use values up
to 255 (0xFF). The range of possible Message ID values is greater than the largest number the
microcontroller can handle. To get around this the message is broken up into two bytes, a /i byte and a
lo byte. These are accessed via the two macro functions GetRxIDHi and GetRxIDLo. Both functions
take the parameter Buffer to select which RX Buffer to get the Message ID data from.

The problem is further complicated by the fact that the Message ID is an 11 bit number with the first 8
Most Significant Bits forming the hi byte, and the 3 Least Significant Bits forming the first three Most
Significant Bits of the lo byte (see Fig. 11.1). This can make the mathematics for manually checking
Message ID values quite complex. The simplest way is to compare the retrieved values with known
values for hi and lo to see if they match.

Message ID to hi and lo bytes conversion
Message ID = Decimal 101, Hex 0x65

Binary: 00001100101

op 8 MSB Bottom 3 LSB
lofoJo]o[1]1]o[o] [1]o[1][o]o[0]0]0]
hi byte lo byte

Dec 12, Hex 0xOC Decimal 160, Hex 0xAO

Figure 12.1 Converting the hi and lo bytes of the Message ID

12.1.1 Converting from 8-bit values to 11-bit

At some stage you may need to know how to get the full 11-bit value from the two 8-bit High and Low
bytes. The mathematics is as follows:

Message ID = (hi x 0x08) + (lo / 0x20)

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

12.2 Manual Message ID’s — a recommendation

Because of the added complexity of working with the 4i and /o Message ID values we suggest that for
educational use, especially when just beginning to work with CAN, that you use a system where one of
the bytes (probably the lo byte) remains the same, whilst the other byte (the hi byte) changes. This
simplifies the mathematics considerably whilst still allowing you access to 256 different Messages
ID’s.

Note: Because we are creating both sending and receiving nodes we can pick Message ID’s that
make life easy for us. However, if you are adding a node to an existing system you may need to
work with Message ID’s that have already been set up. This may well mean that both hi and lo bytes
need checking. You may also need to test the network to ensure that your Message ID’s do not
affect other nodes inadvertently.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

13 Exercise 2: Rear Light cluster

13.1 Part A: Sending

13.1.1 Objective
Set up serious of switches to activate a brake light, an indicator light, and a rear light.

13.1.2 Instructions
The three lights have been assigned the following ID numbers:

Brake =ID 8
Rear light =ID 16
Indicators =1D 32

The activation switches are as follows:

Brake = Switch O - Brake
Rear light = Switch 1 — Rear Light
Indicators = Switch 2 — Left indicator

Node 2 (Switches Node) will be used to send the signals.

13.2 Part B: Receiving

13.2.1 Objective
Set up a basic car rear light cluster display containing a brake light, an indicator light, and a rear light.

13.2.2 Instructions

The three lights have been assigned the following ID numbers:

Brake =ID8
Rear light =ID 16
Indicators =1D 32

The Display lights are as follows:

Brake =LED 0 - Brake
Rear light =LED 1 — Rear Light
Indicators =LED 2 — Left indicator

Node 3 (LED’s Node) will be used to display the signals.

The indicators need to be made to flash if possible at about 1 second on, 1 second off.

13.3 Further work

e We have set the program up as a LEFT rear light cluster. Consider what changes we would
need to be able to make in order to create a RIGHT rear light cluster.

e Could we set up a front light cluster? If so what messages would be the same? What extra
messages would we need?

e Ideally we would want both a left and a right rear cluster. What changes would we need to the
CAN system in order to enable us to set this up?

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1ld rfX

CAN Bus Training — Course Notes

14 Notes for Exercise 2

14.1 Part A: Sending

We have three signals to send, and just by coincidence we have three buffers with which to send
signals. If we set a light up for each buffer then we can send all three signals using the three buffers.

The basic program is the same as the brake light one in example 1, but with three check switch/send
signal sections. Set each section up to use a different buffer, and set each buffer up with a different

Message ID. These are what we will be dealing with next.

Open up the Properties Panel and set the Message ID for the three TX Buffers as follows:

Buffer Message ID Function
TX Buffer 0 8 Brake

TX Buffer 1 16 Rear Lights
TX Buffer 2 32 Indicators

14.2 Part B: Receiving

In Part A we set up a node to send three possible messages with the Message ID’s 8, 16 and 32. Now
we need to set up a node that can accept these three Message ID’s.

If we open up the properties and look at RX Buffer 0 we will see that we can have up to 2 Message
ID’s to accept for that buffer. If we check Rx Buffer we will see that RX Buffer 1 has 4 message ID’s
we can set up. We have three possible incoming messages so we use RX Buffer 1 to receive them all.

Set the first three ID boxes on RX Buffer 1 to Message ID 8, Message ID 16 and Message ID 32. De-
select the other boxes so that they don’t accept any other Message ID’s.
Now we will get a response on RX Buffer 1 whenever one of those 3 Message ID’s is sent.

We can use a simple CheckRx macro to see if a message has arrived. However there are three messages
that could trigger RX Buffer 1, so we need to distinguish between them.

At this point you would probably need to get out the pen and paper and work out what the hi and lo
byte values are for the two Message ID’s. Fortunately we have done this for you.

Message ID Hi byte Lo byte
8 1 0
16 2 0
32 4 0

Now you can see why we picked such a strange Message ID sequence. The lo byte is the same for
each, so we can simply test the hi byte to find out which message it is.

A more sophisticated approach would be to test the lo byte first to make sure it is 0, as expected, and
then test the hi byte to see which message it is.

If we had picked values such as 101, 149, 150 the values would have been:

Message ID Hi byte Lo byte
101 12 160
149 18 160
150 18 192

And we would need to check both hi and lo bytes for the values involved.

CP2793-02 CAN Bus Training

Copyright © 2014-2021 Matrix TSL

1ld rifX

CAN Bus Training — Course Notes

In our send program we set up the Message ID’s 8, 16 and 32. Now we can check to see which
message was sent and deal with it accordingly.

Message ID Hi byte value Message Output
8 1 Brakes DO
16 2 Lights DI
32 4 Indicators D2

So if we receive Message ID 16 for instance we turn on output D1.

The code fragment in Fig. 13.1 shows how we can check for a message and then retrieve the message
ID identifier values (in this case just the Message ID Hi byte is needed) and check that to see which
message has been sent.

Check for messages
CheckRx{1)

Decision
[aks
es
Moy

Get ID Hi byte
GotRyDHi(1)
CheclkforlD =8

RETWAL = 17

[l

_ Calculation
B BRAKES = NOT(BRAKES)

Figure 14.1 Code fragment showing how to retrieve the message ID

14.2.1 Which buffer to use?

We need to accept three Message ID values, but there are only 2 Message ID slots on RX Buffer 0.
However RX Buffer 1 has 4 slots for Message ID values. In the example above we have set up all three
messages on RX Buffer 1 and just used that buffer. However we could have used a combination of
both buffers if we wished.

CP2793-02 CAN Bus Training

Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

14.3 Indicators

Having flashing indicators is an optional extra as it does not concern CAN networking, but is a useful
exercise and improves the visual appeal of the finished display.

14.4 Conclusion

Now we have a working system. It can send different signal and can differentiate between those
signals. This enables us to build quite complex systems that are capable of sending many different
messages from many different nodes, and has the capability to be selective and to react to some all or
even none of the potential messages on the system.

14.5 MAJOR ERROR!!! —Is the Brake on?

There is a problem with the system. We have a brake signal that we are using to turn the brake light on
or off. But what would happen if the system missed a signal, or started with the brake on when it
should be off? The signal would become reversed. The brake light would be lit when the brake is off
not on. Not a good situation.

We are stuck in this situation because we can only send three signals and all three are needed for
different jobs. Also the signal sent for the brake does not tell us if the brake is on or off, simply that a
Brake signal was sent. What we would like to do is either send separate Brake On and Brake Off
signals, which would require more Message ID’s than we have at the moment, or the ability to send
data with the message to say whether the brake is on or off. And these are exactly the problems we will
be dealing with next.

14.6 Further work

Further work includes some simple practical questions, and one theoretical one.

To make a right hand light cluster would just involve a different Message ID and activation switch to
replace the left hand indicator. In a similar way the front light cluster would need to ignore the brake
light message as there is no brake light there. But it would need a Dip signal sent instead.

Setting up a left and right system (or a full front and rear system if this train of thought is taken to its
conclusion) is theoretical, as it requires macros not yet introduced. To set up a left and right system
though would require either a fourth Message 1D, or some kind of data to say which indicator to use.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

15 Demonstration 2: Rear light cluster

This example shows a CAN message system in action.

15.1 Setup
PIC BL0011 Arduino BL0055
Port A Port B Port C AO0-5 DO0-7 D8-13
Node 1 BL0145 BL0140 BLO0145 BL0140
Node 2 BL0145 BL0140 BL0145 BL0140
Node 3 BL0167 BLO0140 BLO167 BL0140

Connect and power up the CAN solution. We will be using switches 0-2 on Node 2 to mimic activation
action signals. We will be using LED’s 0-2 on Node 3 to mimic the rear light cluster.

Open up file CAN_EXAMPLE 02 SEND.FCFX in Flowcode and download it to Node 2 (The
Switches node).

Open up file CAN_EXAMPLE 02 RECEIVE.FCFX in Flowcode and download it to Node 3 (The
LED node).

15.2 Viewing the messages

If you open up CANKing and view the network traffic you will see a message being sent whenever one
of the switches is pressed.

15.3 The light cluster

When the brake pedal is pressed (Switch 0 on Node 2) the Brake light (LED 0 on Node 3) lights up.
The signal generated by Node 2 (the switches) is picked up by Node 3 (the LED’s) and, as all messages
are accepted, the message is acted upon lighting the LED.

In a similar way the Lights switch (Switch 1) activates the rear light (LED 1), and the Left indicator
switch (2) activates the left indicator (LED 2).

15.4 The messages

The three lights have been assigned the following ID numbers:

Brake =ID 8
Rear light =ID 16
Indicators =1D 32

Watch in CANKing as messages are sent, and how the Message ID tells you which light will be
activated.

15.5 Other network traffic

Open up file CAN_EXAMPLE 02 RANDOM SEND.FCFX in Flowcode and download it to Node 1
(The Display node).

The switches on the Display node have been set to send various messages. Press on them to see what
happens. If anything significant happens check with CANKing to see if you can work out why.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

15.6 Conclusions

This demonstration shows Message ID’s in action. Events can be linked to specific Message ID’s so
that they can be on a network with lots of traffic and will only respond to the correct signal, not random
traffic as in demonstration 1.

16 Notes for Demonstration 2

The first demonstration files CAN_EXAMPLE 02 SEND.FCFX and
CAN EXAMPLE 02 RECEIVE.FCFX are based on those created for Exercise 2.

The final file CAN EXAMPLE 02 RANDOM SEND.FCFX that is sent to the Display node sends out
various signals. Of note is the signal for switch D4 that has the message ID 32. This is the same
Message ID as the Indicator signal. As it has the same Message ID it will trigger the Indicators on the
receiving node.

This illustrates a potential problem on CAN networks — that of conflicting Message ID’s. Where more
than one Node can generate a message with the same Message ID thus inadvertently triggering the
receiving Node. This can be used at the end of Exercise 2 to demonstrate the same potential problem.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

17 Changing Message ID’s

Up to now we have used the Message ID’s as set in the Properties Panels. However, you can change
the ID using the SetTx/D macro. This opens up a whole new realm of possibilities. By being able to
change message ID’s on the fly you can react to inputs by sending different messages depending on the
data received. For instance the message that operates a flashing warning light could be changed to one
that also produces a warning noise after a certain point.

However there is a problem: Message ID’s are 11-bits in length, but microcontrollers are only able to
handle 8-bit numbers. So the Message ID value needs to be divided into two separate 8-bit bytes, a hi
and a lo byte, as shown in Fig. 16.1.

Message ID to hi and lo bytes conversion
Message ID = Decimal 101, Hex 0x65

Binary: 00001100101

op 8 MSB Bottom 3 LSB
loJofofo[1]1]o]0] [1]o]1]o[0f0[0]0]
hi byte lo byte

Dec 12, Hex 0x0C Decimal 160, Hex 0xAQ

Figure 17.1 Converting the hi and lo bytes of the Message ID

17.1.1 The SetTxID macro

The SetTxID macro takes three parameters: buffer, hi and lo. Buffer is the TX Buffer number, 0-2.
The other two parameters, hi and lo, set the Message ID value.

The problem here is that whilst the Message ID value can be up to 2047 (hex 0x7FF) Flowcode, and
the microcontroller can only handle numbers up to 255 (hex 0xFF). So we need to split the Message ID
value into two separate bytes. The Message ID is 11 bits in length, and we need to convert this into two
8 bit bytes.

17.1.2 Converting from 11-bit to 8-bit values

The two bytes are laid out as follows:

The 8 Most Significant Bits (the first 8) of the ID are put into the hi byte.

The 3 Least Significant Bits (the final 3 bits) are put into the lo byte - but in the 3 Most Significant Bit
positions (i.e. the first 3)

The mathematics for converting from the full Message ID to the two hi and lo bytes is:

hi = (Message ID AND 0x7F8) /8
lo = (Message ID AND 0x007) * 0x20

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

Message ID to hi and lo bytes conversion

Message ID = Decimal 101, Hex 0x65
Binary: 00001100101

Message ID [o]oJoJol1]1]o]o]1]0]1]
AND 0x7F8 [1[1[1]1]1]1][1]1]0o]o] 0]
- [0[o[ofo][1] 1][0[o][0[0] 0]
Divide by Dec 8, Hex 0x008 (right shift >> 3)
- [[[JoloJo[o[1]1][0]0
hi byte
ofofolo[1]1]0]o0
Dec 12, Hex 0x0C

Message ID (ofofofo[1]1][0f0[1]0] 1]
AND 0x007 lo[o[ofo[o]o[o[o[1[1]1]
= lo[ofofo]olo[0fo[1]0]1]
Time Dec 16, Hex 0x208 (left shift << 4)
= L[[[1]o[1][olol0[0]0
lo byte
1/0[1/0]o0]0l0]0
Decimal 160, Hex 0xAO

Figure 17.2 Converting the hi and lo bytes of the Message ID

The simplest way is to set the hi and lo values to pre-determined values. When choosing Message 1D
values you will need to ensure that you do not use any of the same Message ID’s used by other
transmitting node, otherwise you risk chaos on the network. You can aid the designer of the receiving
nodes as well by selecting Message ID values that the receiving nodes can identify and differentiate
casily.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

18 Exercise 3: Rear light system

Exercise 3 extends Exercise 2 to include left and right indicators. The solution to Exercise 2 can be
used as a starting point for Exercise 3.

18.1 Part A: Sending

18.1.1 Objective
Set up series of switches to activate a brake light, a left and a right indicator light, and a rear light.

18.1.2 Instructions

The three lights have been assigned the following ID numbers:
Brake =ID8
Rear light =ID 16
Left indicator ~ =1D 32
Right indicator =1D 64

The activation switches are as follows:

Brake = Switch O - Brake
Rear light = Switch 1 — Rear Light
Left indicator = Switch 2 — Left indicator

Right indicator = Switch 3 — Right indicator

Node 2 (Switches Node) will be used to send the signals.

18.2 Part B: Receiving

18.2.1 Objective

Set up a left and a right car rear light cluster display containing a brake light, an indicator light, and a
rear light. Note that this will require two separate nodes with separate but similar programs.
Create one node first and use the program as the base for the program for the second node.

18.2.2 Instructions

The three lights have been assigned the following ID numbers:
Brake =ID 8
Rear light =ID 16
Left indicator ~ =1D 32
Right indicator =1D 64

The Display lights are as follows:
Brake =LED 0 — Brake
Rear light =LED 1 — Rear Light
Left indicator = LED 2 — Left indicator
Right indicator = LED 3 — Right indicator

Node 1 (Display Node) will be used to display the Left hand cluster signals.
Brake =LED 0 — Brake
Rear light =LED | — Rear Light
Left indicator =~ = LED 2 — Left indicator

Node 3 (LED’s Node) will be used to display the Right hand cluster signals.
Brake =LED 0 — Brake
Rear light =LED 1 — Rear Light
Right indicator = LED 3 — Right indicator

The indicators need to be made to flash if possible at about 1 second on, 1 second off.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

18.3 Further work

e We now have a working rear light set. What changes are needed to create a front light set?

e Can a full front and rear light system be created? (Node 1 can be used for the front light
cluster).

e We can use the same signals to set up a dashboard display. The only difference to a cluster is
that the dashboard has signal lights for both indicators.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

19 Notes for Exercise 3

19.1 The programs

Apart from having four messages the problem is the same as in Exercise 2. We need a fourth message
so we need to modify the Message ID for at least one of the TX Buffers. However we can leave the
other two as defaults. The best solution would be to keep the brake and Light messages as is, and
modify the Indicator Message ID according to which one it is — left or right.

We can use the SetTxID macro to set the Message ID’s on the fly. For this macro though we need the hi
and lo bytes to be sent as parameters. The hi and lo bytes needed are listed below for convenience.
Note how we have maintained the same system as before with only the hi byte changing.

Message ID Hi byte Lo byte
8 1 0
16 2 0
32 4 0
64 8 0

Once again though it is worth reiterating that we may not always have the luxury of such a neat set of
Message 1D’s when working with other networks.

The two receive nodes are simple to make. The left hand indicator is exactly the same as the one in
Exercise 2, and the right hand one only needs changing to accept the right hand indictor Message ID.

19.2 Conclusion

This may seem a small exercise, but it is of fundamental importance. Now we are free of the default
three TX buffer/Message ID limitation. We can alter Message ID’s as we see fit and so can create up to
65536 potential Message ID’s. Our only worries now are that we ensure that our Message ID’s don’t
clash with other Message ID’s on the network, and that our receiving Nodes are set to receive them.
But that is just down to good planning coding and documentation.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

20 Demonstration 3: Rear light cluster

This example shows a CAN message system in action.

20.1 Setup
PIC BL0011 Arduino BL0055
Port A Port B Port C A0-5 DO0-7 D8-13
Node 1 BL0167 BL0140 BLO167 BL0140
Node 2 BLO0145 BL0140 BLO0145 BLO0140
Node 3 BLO167 BL0140 BLO0167 BL0140

Connect and power up the CAN solution.
We will be using switches 0-2 on Node 2 to mimic activation action signals.
We will be using LED’s 0-2 on Node 3 to mimic the rear light cluster.

Open up file CAN_EXAMPLE 03 SEND.FCFX in Flowcode and download it to Node 2 (The
Switches node).

Open up file CAN_EXAMPLE 03 LEFT INDICATOR.FCFX in Flowcode and download it to Node
1 (The Display node).

Open up file CAN_EXAMPLE 03 RIGHT INDICATOR.FCFX in Flowcode and download it to
Node 3 (The LED node).

20.2 Viewing the messages

If you open up CANKing and view the network traffic you will see a message being sent whenever one
of the switches is pressed.

20.3 The light cluster

When the brake pedal is pressed (Switch 0 on Node 2) the Brake lights (LED 0 on both Node 1 and
Node 3) light up. The signal generated by Node 2 (the switches) is picked up by both Node 1 and Node
3 (the LED’s) and, as both nodes are set to accept all messages, the message is acted upon lighting the
LEDs.

In a similar way pressing the Lights switch (Switch 1) activates the rear lights (LED 1 on Node 1 and
Node 3). Note that whilst development boards often use push to make switches, real life applications
would be likely to use toggle switches for items such as light switches.

The Left indicator switch (2) activates the left indicator (LED 2 on Node 1) and the Right indicator
switch (3) activates the right indicator (LED 3 on Node 3). However, unlike the Brake and Light
signals these two indicator signals are only accepted by specific nodes. So the left indicator signal is
only accepted and acted upon by Node 1, the Left light cluster. Similarly the right hand cluster accepts
the right hand indicator signal whereas the left hand cluster does not.

20.4 The messages

The four lights have been assigned the following ID numbers:
Brake =ID 8
Rear light =ID 16
Left indicators =1D 32
Right indicators = 1D 64

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

Watch in CANKing as messages are sent, and how the Message ID tells you which light will be
activated.

20.5 Conclusions

This demonstration shows Message ID’s in action. Events can be linked to specific Message ID’s so
that they can be on a network with lots of traffic and will only respond to the correct signal, not random
traffic as in the first demonstration.

21 Notes for Demonstration 3

This example is the same as Demonstration 2, but with both rear light clusters allowing the students to
see the different indicators light up.

You can use this demonstration as an alternative to demonstration 2.
Sending the CAN_EXAMPLE 02 RANDOM _ SEND.FCFX file from Demonstration 2 to Node 1 will

allow you to show how random messages with the same Message ID’s can cause problems for
receiving nodes.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

22 Message Data

22.1 Default Data properties

On the Properties Panels there is a set of properties for adding data to a message.

The properties are a Data Length property and up to eight bytes of data. The data length property sets
how many bytes of data the message contains, and can be set from 0 to 8. When set to 0, no data will
be sent. When set to 1-8 that amount of data bytes will be sent. Depending on the value set some or all
of the data boxes may be grayed out. These grayed out boxes will not be used in the message. You can
edit the value in the data boxes to set default data values that will be passed with that buffer. All three
transmit buffers work the same way.

22.2 Changing Message Data

There is a macro that you can use to modify the data in your program.

The SetTxData macro takes the following parameters: Buffer, Count, d0, d1, d2, d3, d4, d5, d6, d7.
Buffer refers to the TX Buffer to be modified (0, 1 or 2).

Count sets how many bytes of data to use (0 — 8, with 0 being no data).

d0 — d7 are the individual bytes of data.

Note that values for all 8 bytes must be added, as they are required by the macro. Simply add a value
for any unused bytes (traditionally ‘0’ is used in programming for values that need to be supplied but
are not acted upon). This needs to be done even if Count is set to 0, meaning no actual data is sent.

Example 1

SetTxData(0, 4, 255, 128, 32, 56, 0, 0, 0, 0) will setup TX Buffer 0 to send the 4 bytes of data 255, 128,
32, 56.

Example 2

SetTxData(1, 0, 0, 0, 0, 0, 0, 0, 0, 0) will setup TX Buffer 1 to send 0 bytes of data.

22.3 Keeping track of data

When a program uses SetTxData to modify the data it is up to the programmer to keep track of what
the data now is. It is also the job of the programmer to ensure that the correct new data is passed to the
buffer. The Properties Panel defaults are what is in the buffer when the program starts. If you modify
the data it will stay modified until you modify it again.

22.4 Sending data

Whenever a buffer is sent, the Data associated with that buffer is sent automatically. No further action
needs to be taken. If SetTxData has not been used to modify the default data then that default data
specified on the Properties Panel for that buffer will be sent. If SetTxData has been used to modify the
data then the current data will be sent. Note that the Properties Panel is not altered by SetTxData.

When a message is sent the data length is passed with it, along with the corresponding bytes of data. If
data length is 5 then five bytes of data will be sent. If it is 3 then only three bytes of data will be sent.
This is important as trying to read five bytes of data if only three were sent will cause problems.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

22.5 Receiving Message Data

Receiving message data is done in two parts. Firstly you need to find out how much data has been sent,
and secondly you need to extract the individual bytes of data.

The macro GetRxDataCount is used, along with the parameter buffer, to get the data length for the
message in the relevant RX Buffer. Once you have the data length you can see if the message includes
any data, and if so how many bytes.

You can then use this information to safely extract the data using the GetRxData macro. GetRxData
takes the parameters Buffer (the RX Buffer to use) and /ndex (the item to retrieve).

The index is numbered 0-7, in the same way the TX Buffer data items are named DO to D7 on the
Properties Panels. Index 0 is the first item, index 1 the second etc. Starting at O rather than 1 is a
common feature in programming, and one to be aware of if you are getting erroneous data returns.

22.6 Data order considerations

Care needs to be taken when working with data as changing the order in which the data is stored will
require corresponding changes to how the data is retrieved. Given the fact the nodes are independent of
each other it is best to decide on a strategy for the data at an early stage of system design. Should more
data be required it is often easier to add the new data on as extra items rather than change the order
involved, as this will have less impact on any other nodes.

It may also be easier to use a pre-existing data structure and simply read in and ignore items that are
not required rather than to reprogram several nodes just to rearrange the data order.

22.6.1 Example: Setting up the data node

We are given the task to send two bytes of information on TX Buffer 0, Message ID 105, when switch
AOQ is pressed. The two bytes of data have default values but the values can be updated
programmatically.

To set up the default values we first open up the Properties Panel and go to the TX Buffer 0 tab and
select a data length of 2. Note that boxes D0 and D1 are active, but that the others are grayed out. We
would then enter the default data values which would be automatically send when the buffer is sent e.g.
145 in DO, and 12 in D1. Once we have set up the default values they will be sent whenever the buffer
is sent unless they are changed programmatically.

We can change the value in the program by using the SetTxData macro e.g. SetTxData (0, 2, MyVar0,
MyVarl, 0, 0, 0, 0, 0, 0) would change the two bytes of information to the values of MyVar0 and
MyVarl.

22.6.2 Example: Setting up the receive node

If we wished to receive data from a message, such as two items of data as sent by the example above,
we can GetRxData to retrieve the data items.

Set up a basic receive node that polls RX Buffer 0 for the Message ID 105.
Once a message is received we can query it.

Remember that the GetRxData index parameter is 0-7 not 1-8 matching the D0-D7 data items.

Add two GetRxData macros to the program. Set the first one to retrieve RX Buffer 0 data item index 0,
GetRxData(0,0), and put the value into DATA 0 (or some other suitably named variable). Set the
second one to retrieve data item index 1 and out this into DATA 1, GetRxData(0,1).

We than have the data in and can then check it, display it or modify it as we wish.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 17X
l I I CAN Bus Training — Course Notes

22.6.3 Example: Variable amounts of data

We knew that there would only be two items of data in the program above as we created both nodes,
but if we were not sure we could check how much data had arrived with the GetDataCount macro.

Once a message has arrived we would use GetRxDataCount to check how many items of data have
arrived. We can then use this information to go through and read in the items of data.

Once we have the data read in using GetRxData we can then work with the data as needed for the
program task.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

23 Example 4: Fuel gauge and warning light

Set up a basic fuel gauge with a warning light than comes on when 10% or less of the petrol is
remaining.

23.1 Part A: Sending

23.1.1 Objective

Set up a fuel level sensor that passes the fuel level as a 0-255 value.
In addition set up a “Fuel low” warning sensor that activates at a preset fuel level.

23.1.2 Instructions

Set up a basic CAN send program with the following default properties:

TX Buffer 0 — Message ID = 160, Data Length =1, DO = 0.

TX Buffer 1 — Message ID = 176, Data Length = 0.

TX Buffer 0 will carry the Fuel value in DO, and TX Buffer 1 will be used for the warning signal.

Node 4 (Sensor Node) will be used to send the signals.
Note: The variable potentiometer can be used to represent the fuel level.

23.2 Part B: Receiving

23.2.1 Objective

Set up display panel that shows the fuel level. Also set up a warning indicator that flashes when the
fuel level becomes low.

23.2.2 Instructions

The LCD display can be used to display the fuel amount. This can be either raw data 0-255 or in some
form of conversion e.g. percentage or a system when the maximum 255 = X number of gallons.

LED 0 will be used for the Fuel low warning light.

Node 1 (Display Node) will be used to display the fuel level and the warning light.

23.3 Further work

The fuel warning light comes on when fuel gets low. However, drivers are notorious for missing or
ignoring warning lights. One thing that does grab our attention though is a flashing light.
Modify the program to produce a flashing light once the fuel gets to say half the fuel low level.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

24 Notes for Exercise 4

For the program we need to add an Analogue sensor (the thermometer Component) and to monitor its
reading. The analogue sensor reading consists of two bytes of data, a High byte and a Low byte.
However for this example we will just use the High byte to simplify matters. Add the SampleADC
macro, and a ReadHigh macro to read the fuel level into a suitable variable such as FUEL LEVEL.
Add a SetTxData macro and put in the parameters Buffer 0 (for TX Buffer 0), Count =1 (1 data
register) and D0 = FUEL_LEVEL (the data to be sent). You need to add data for the other data
registers even though they are not used, so you will need to add a zero for each of them.

Follow this with a decision icon to see if the fuel is too low. Here we have opted to check
FUEL LEVEL against another variable called MIN_FUEL, which we will need to initialize at the start
of the program.

If the fuel is too low we can send the TX Buffer 1 signal. By using two buffers we can send fuel data
updates constantly, but only send the warning signal when needed.

24.1.1 Receiving the data

Firstly set up a program that monitors the CAN network for a signal with the Message ID 100.

Once this is found we need to extract the data, in this case the FUEL LEVEL data that was sent. We
retrieve the data with the GetRxData macro. We need to supply the parameters Buffer (0 for RX Buffer
0), and the index of the data register we want, in this case the item we want is Index = 0 which
corresponds to item DO on the TX Buffer (see Fig. 23.1).

Set the Return value to a convenient variable such as FUEL_LEVEL. Now that you have the data you
can process it and output it to the LCD display. Alternatively you could use various output methods
such as a light bar graph that falls away as the fuel is used up.

There is another useful macro to use when retrieving data: GetRxDataCount, which returns the data
length for the specified buffer. This allows you to both check that there is some data there (0 = no data
sent), or to find out how much data is there if a variable amount is possible.

24.1.2 Receiving the warning signal

The warning signal is simple. If a message with the Message ID 101 occurs then we need to light the
warning LED. We could just deal with it straight after we have read and processed the fuel level data.
Or we could deal with it elsewhere. Maybe there is another specific node that handles the warning
signals. You don’t need to handle all the messages sent from one node at the same receiving node. The
great benefit of CAN is that you don’t have to do everything in one place. We could set up a third node
to handle warning signals.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1ld rifX

Initial values
WIN_FUEL =32

Initialise the CAN Networ. .
Init

Loop
yhile 1

-

Read the Fuel sensor
SampleADC

Getthe Fuel Level
ReadHigh

Call Macro
SetTxData(0, 1, FUEL_LEYE

CAN Bus Training — Course Notes

-

Properties: Component Macro

- B

Display name: ISei Buffer 0 data LI
Companent: Macro:
rﬂﬂ_ GetRxData -
ADC(D) Set TxData
SetD -
Parameters:
MName | Type Expression
buffer BYTE] -
data cnt BYTE 1 :
do BYTE FUEL LEVEL :
dl BYTE 1] :
dz BYTE] :
d3 BYTE a :
d4 BYTE a :
ds BYTE Q :
dea BYTE a :
a7 BYTE 0 =]
Fieturn ¥ alue: |

|
&

L

Cancel |

Send Fuel level

I!Zj
SendBuffer{0)
I5 the fuel low?
:: o e FUEL _LEVEL = MIMN_FUEL?
' Yes
[s]

Loop

END

Figure 24.1 Setting the macro properties

CP2793-02 CAN Bus Training

Send fuel low signal
SendBuffer(1)

Copyright © 2014-2021 Matrix TSL

1ld rfX

CAN Bus Training — Course Notes

25 Demonstration 4: Fuel gauge and warning light

This example shows a CAN message system with data in action.

25.1 Setup
PIC BL0011 Arduino BL0055
Port A Port B Port C A0-5 DO0-7 D8-13
Node 1 BL0169 BL0140 BL0169 BL0140
Node 4 BL0129 BL0140 BL0129 BL0140

We will be using Node 1, the display node, to display the data. We will be using Node 4, the Sensor
Node, fitted with the rotary potentiometer in socket 1 (Pins 0,1) to send the data.

Open the file CAN_EXAMPLE 04 RECEIVE.FCFX in Flowcode and download it to Node 1 (The
Display node).

Open the file CAN EXAMPLE 04 SEND.FCFX in Flowcode and download it to Node 4 (The Sensor
node).

25.2 Viewing the messages

If you open up CANKing and view the network traffic you will see the message being sent periodically
for the fuel level, and also for the fuel warning light should the fuel get low.

25.3 The fuel level

When the program starts the fuel level will be displayed on the LCD.
Moving the variable potentiometer on the sensors Node will change the fuel level displayed.

25.4 The warning light

When the fuel level becomes too low a warning light is activated.

25.5 Viewing the data

If you check the network traffic sent in CANKing you will find a stream of messages being sent with
Message ID 100. This is the data being sent. Note how the message has a single item of data. Does the
data relate directly to the figure displayed? Or is it altered in some way — e.g. raw data to gallons?
Where does the warning light message come from?

25.6 Conclusions

This demonstration shows data being passed. Although in this example it is just one item, it
demonstrates the potentials of CAN. Not only can you send specific messages that will be picked up by
specific receiving nodes, but you can actually pass data to them as well - fuel, speed, height, pressure,
On/Off states, anything. If it can be converted into data it can be sent.

CP2793-02 CAN Bus Training

Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

26 Advanced CAN Networking

This section discusses advanced CAN concepts such as setting Message ID’s Masks and Filters and the
CNF settings. The message structure is examined, and other issues such as network wiring are also
looked at.

26.1 Exercises

No exercises or demonstrations are provided for this section. Existing exercises can be adapted to use
masks and filtering or exercises can be generated to demonstrate the mask and filter mathematics
examples given below.

26.2 Masks and filters

26.2.1 Masks and filters - the general concept

An important but complex part of our implementation of CAN is Masks and Filters.
Masks are used to modify the Message ID values.
Message ID’s are checked against the Filters to see if they should be accepted or not.

26.2.2 Masks

Masks modify the Message ID values received by the buffer. They modify the value by removing the
mask bits from the incoming Message ID. This can be used to make a number of different Message
ID’s appear to be the same value. For example a mask could remove the tens digit from a message, so
that messages ID 120, 123, 140 and 165 would appear as 100, 103, 100, 105 respectively. For details
on the masking process see the examples given below.

If the Filters were set up to accept Message ID 100 then Message ID’s 120 and 140, which are both
converted to 100 by the mask would be accepted. Such a system could be used to modify a batch of
Message ID’s that all share a related function — e.g. several warning signals could go to their respective
warning lights nodes using their separate Message ID’s, and because they all mask to the same value,
get picked up and acted upon by a central Master Warning light node.

26.2.3 Filters

Filters are the doormen of the CAN system. They check the incoming Message ID’s against the Filters
- a list of Message ID’s that they can accept. If your name is on the list you will be allowed in. If not...
sorry, try somewhere else mate.

Each filter has a check box next to it on the Properties Panel that can be used to enable or disable that
particular filter.

There are three general filter settings and either 2 or 4 specific filters depending on the RX Buffer.

o Accept all Messages — all Message ID’s are accepted. The node will respond to any Message
arriving on this buffer.

e Reject All Messages — effectively an ‘Off” switch for the buffer. The node will not respond to
any message on this buffer. May seem odd, but can be used to turn off an RX Buffer that is
not being used. Why have RX Buffer 1 active if you are only going to use RX Buffer 0?

e Use Masks and Filters — Uses the Masks and filters to modify and check Message ID’s to see
if they should be accepted or not.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

26.2.4 RX Buffer Properties

To enable Masks and Filters, select the ‘Use Mask and Filter’ setting, the other two settings are ‘Accept
All’ and ‘Reject All’. The Filter values can be set in Properties Panel, for example see the RX Buffer 0
properties displayed below.

EI@ RX Buffer 0

] settings Use Mask and Fitter =]
i, Mask 2047
-2, Fiter 0 100
“Z Filter 1 101

Figure 26.1 RX Buffer 0 Mask and Filters values, and the Message ID's of each Filter.
The Buffer RX1 properties are similar to the Buffer RX0 properties shown above; however more filters

are available for use.

26.3 How to work out which messages will be trapped by a particular
mask/filter combination

The best way is to work through some examples:
Note that all values for Message ID’s, masks and filters are numbers between 0x000 and 0x7FF.
26.3.1 Using masks and filters: Example 1

Mask 0 = 0xOFF Filter 0 = 0x100 Filter 1 = 0x050

In binary, this looks like:

Mask 0 = 0 0 0 1 1 1 1 1 1 1 1
Filter 0 = 0 0 1 0 0 0 0 0 0 0 0
Filter 1 = 0 0 0 0 1 0 1 0 0 0 0

For the mask, a ‘1’ signifies ‘check this bit” and a ‘0’ means ‘ignore this bit’

So, these filters will accept the following messages ("'x" = don't care)
Mask 1 = 0 0 0 1 1 1 1 1 1 1 1
Filter 2 = X X X 0 0 0 0 0 0 0 0
Filter 3 = X X X 0 1 0 1 0 0 0 0

ie.

Filter 0 accepts 0x000, 0x100, 0x200, 0x300, 0x400, 0x500, 0x600, 0x700

Filter 1 accepts 0x050, 0x150, 0x250, 0x350, 0x450, 0x550, 0x650, 0x750

26.3.2 Using masks and filters: Example 2

Mask 1 = 0x350 Filter 2 = 0x200 Filter 3 =0x123 Filter 4 = 0x3FF

Rewriting in binary:
Mask 1 = 1 1 1 0 1 0 1 0 0 0 0
Filter 2 = 0 1 0 0 0 0 0 0 0 0 0
Filter 3 = 0 0 1 0 0 1 0 0 0 1 1
Filter 4 = 1 1 1 1 1 1 1 1 1 1 1

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

Here, the mask will only check 4 bits and ignore the other 6. Here's what the filters will accept:

Mask 1 = 1 1 1 0 1 0 1 0 0 0 0
Filter 2 = 0 1 0 0 X 0 X X X X X
Filter 3 = 0 0 1 0 X 1 X X X X X
Filter 4 = 1 1 1 1 X 1 X X X X X

They will actually trap a lot of messages (64 each!):

Filter 2 = 0x200, 0x201, 0x202, ... 0x220, 0x221, ... 0x280, 0x281, ... 0x2A0, 0x2A1, ... 0x2AF
Filter 3 = 0x100, 0x101, 0x102, ... 0x120, 0x121, ... 0x180, 0x181, ... 0x1A0, Ox1AL1, ... Ox1AF
Filter 4 = 0x750, 0x751, 0x752, ... 0x770, 0x771, ... 0x7D0, 0x7D]1, ... 0x7F0, 0x7F1, ... 0x7FF

This second example is not very practical. In general, it is more logical to set the mask so that each
filter accepts a consecutive range of messages.

As you can see, the mask determines which bits of the filters are actually looked at. Setting the mask
to 0x000 will effectively mean that the filter will accept any incoming message. Also, the value of the
mask directly relates to how many messages each filter will trap - i.e. 2 (number of '0' bits in the
mask).

A useful way to use the mask would be to ignore the least significant bits. Let’s say that you wanted
the filters to accept 16 messages each - setting the Mask 0 to 0x7F0 would achieve this. Then, setting
the filters to the following...:

Filter 0 = 0x100
Filter 1 =0x110

...would mean that the following messages are accepted:

Filter 0 = 0x100, 0x101, 0x102, 0x103, 0x104, ... 0x10D, 0x10E, 0x10F
Filter 1 = 0x110, 0x111, 0x112, 0x113, 0x114, ... 0x11D, Ox11E, Ox11F

Of course, for simple CAN applications you may wish to only accept one or two messages. Setting the
mask to Ox7FF in this instance would mean that only the message ID specified by each filter would be
accepted, e.g.

Mask 1 = 0x7FF
Filter 2 = 0x100
Filter 5 = 0x200

This would mean that only messages 0x100 and 0x200 would be accepted into RX Buffer 1.

26.4 CNF settings

The ‘Properties’ section on the ‘Properties Panel’ includes options which determine the CNF settings.
These properties s modify the CNF values automatically, and should suffice for most situations.
However there may be a situation where you need to manually set these values. Chances are, in such a
case, you will have been given the values to be set. If so you can simply enter the values directly.

If not you may need to consult the CAN documentation and tables to determine the CNF values to set.
Links to CAN documentation can be found at the end of this document.

Remember - generally, it is best to make sure that these settings are the same for every CAN node on
the bus, although only the bus rate value must be consistent - adjustments for the sample point and STW
are only ever required when using unusually long cables between the nodes.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

26.5 Message details

When a message is sent not only does the Message ID and any associated data get sent, but a number of
markers and wrapper elements are added as well. Fig. 25.2 shows what a message looks like.

Data Frame (number of bits = 44 + 8N)
12 6 BN [D=N<8) 18 [e
w Arbitration Field Conirol Diata Field CRC Field
E Field = End-of-
o
to " 4 5 — B 15 3%3 Frame
&lo] = CRC o]
o 3 gEedz EEE Fs
of [T LLLLLU T folodof TET{TEPRLLTT o TUTTTTTTRPRRLALATTTTRTEL fof Tofefefole[ofofefoff
ta—— |dentifier ——= 5 Daia
B[Length
Meszage E Code
Filtering &

Stored in TransmitReceive Buffers

Stored in Buffers

Bit-stuffing

Figure 26.2 Message format

Note that the 1°s and 0’s refer to dominant and recessive voltage levels and not CMOS or TTL logic
levels. Basically CAN is able to use different voltage levels so that it can be adapted to different
electrical environments.

26.6 Error detection

CAN has a number of automatic error detection systems that flag errors should they occur. If an error is
detected an error signal is sent destroying network traffic and the nodes on the network take the
appropriate action e.g. discarding the message with the error in it.

Error tracking is complex, and for the full details you will need to check the CAN specifications, but
can be summarized briefly as follows: Nodes track how many transmit errors and receive errors flagged
on two counters. Transmit errors increment the transmit error counter by 8 per error, and receive errors
increment the receive error counter by 1. Successful transmit and receives decrement the values. This
means the transmit error counter will rise at a faster rate, appropriate as faulty transmitters are more
likely to be problem. It helps ensure that a faulty transmitter will hit the switch off point before the
nodes receiving its signal and gaining receive errors.

If either value hits 127 then the node becomes error passive. In error passive the node still transmits
errors, but they no longer destroy network traffic i.e. the node is declaring itself to be error prone, and
potentially the problem so it stops destroying the network traffic as the messages may not be the
problem. However its error counts continue to increment as normal.

If either of the error counters hits 255 then the node goes Bus Off and stops transmitting. The node has
identified a problem with itself and removed itself from the network.

In summary the Node goes from screaming ‘major error — all stop’, to shouting about errors but being
ignored, to being switched off.

26.6.1 Bit monitoring

As signals are transmitted they are also check by the receiver part of the CAN system for signal level.
If the level detected is not what it should be a Bit Error is flagged.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

26.6.2 Bit Stuffing.

CAN needs to know if a long signal is a fault rather than part of the message. To help with this CAN
performs Bit Stuffing. If 5 bits of the same value are sent (0 or 1) then a 6" bit is inserted with the
opposite value to let the network know that it is not a fault. This extra bit is automatically removed by
the nodes. Should this bit stuffing not occur then CAN will realize that there has been a problem
somewhere and fire a Stuff Error.

This is required as there is no separate clock signal in CAN. Instead the data rate is synchronized using
the throughput of data. Bit stuffing helps the CAN system synchronize this data clock rate.

26.6.3 ACK bit

When a node sends a message the ACK or Acknowledgment bit is set to 0 (recessive). When a node
receives a message acknowledges the message by returning the signal with the ACK bit set to 1
(dominant). This does not mean that the message got through to its intended destination; merely that it
was recognized by that particular receiving node as a legitimate message. However by checking the
returned signal has the ACK bit set allows the sending node to signal an Acknowledgment Error if it is
not.

26.6.4 Frame check

Certain parts of the CAN message have set formats and set signals. The message is monitored for
errors in these parts. If an error is detected a Form Error is generated.

26.6.5 Cyclic Redundancy Check (CRC)

Messages contain a 15 bit Checksum that can be checked by receiving nodes. If the values do not
match then a CRC Error signal can be fired.

26.7 Wiring and other practical issues

A common implementation of the CAN physical interface utilizes a twisted wire pair, which helps
minimize errors due to voltage spikes and EMC interference. Networks are terminated by a resistor
across the wires to help counter electrical interference. Nodes are added by connecting the node to the
twisted wire pair. All nodes are interconnected via the network; no nodes are isolated from any other
on the network.

Voltages are either dominant (signified by a lin written format) or recessive (signified by a 0 in written
format). There are no absolute voltages. The only requirement is for the system to be able to distinguish
between the dominant and recessive signals. This frees us considerably as we can then work with
signals appropriate to the physical interface most suitable for the system, rather than having to design
the system with specific voltages in mind. However the particular IC’s and other hardware used in your
CAN system may have their own tolerances and expected levels which would need to be taken into
consideration.

CAN only specifies the message format, not the physical layer. Whilst this gives us greater flexibility
in wiring up a CAN system, it also means that wiring details can vary considerable between even
similar systems. Other physical interfaces, such as single line fiber optics, are perfectly acceptable
wiring solutions.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

1d 1afX
l I I CAN Bus Training — Course Notes

27 Reference data

This document was designed to teach you about the basics of CAN, the theory and concepts behind it,
and practical exercises to increase your knowledge and skill in working with CAN. It should also
provide you with the basis of developing your own CAN teaching program, with plenty of scope for
demonstrations and practical work.

But that’s not the whole story of CAN. Should you wish to take your study of CAN further, or to move
into areas of industry that use CAN, there is much more to know, and much more to study!

27.1 CAN standards

CAN is an evolving specification. It has already advanced from the original Bosch specification and is
currently available in Standard (Version 2.0A) and Extended (Version 2.0B) versions.

The system represented here is a Standard CAN system. Extended CAN has a number of differences,
particularly with message format. The main practical difference is that Extended CAN uses 29 bit
Message ID’s in place of the 11 bit values used by Standard CAN. This allows Extended CAN to
address something like 500 million nodes.

(Given the pain in the neck 11-8 bit conversions are, aren’t you glad we didn’t go for 29 bits!)

The CAN specifications can be obtained from the Bosch web site at: www.semiconductors.bosch.de

There are also two ISO standards used for CAN transmissions.

ISO1159 is used for low speed networks (up to 125kbit/second).

ISO11898 is used for high speed networks (up to 1Mbit/second)

There are differences between the two standards with regard to wiring and voltage tolerances etc.
Should you require them the ISO standards can be purchased from the ISO web site at: www.iso.org

27.2 Higher level protocols

Higher level protocols (HLP) are out of the scope of this course, but may be of interest for those who
will be taking CAN further. Higher level protocols refer to the system languages that pass the data
around and present it in a format that applications using that protocol can understand.

CAN only specifies the message format and leaves the higher-level protocol open. This allows different
areas of industry, or different companies to develop or adopt their higher level protocols that best suit
their needs, such as CANopen from Kvaser (www.kvaser.com).

For us though this means that there is no one higher-level protocol set to study. There are a number of
higher-level CAN protocols on the market. Which one to learn and use may simply depend on whom
you go to work for. CAN system designers may need to be flexible enough to accommodate design
work in one or more of these higher-level protocols.

CP2793-02 CAN Bus Training Copyright © 2014-2021 Matrix TSL

http://www.kvaser.com/
http://www.iso.org/
http://www.semiconductors.bosch.de/

1ld rifX

27.3

ACK
ADC
CAN
CANH
CANL
CMOS
CRC
DAC
ECU
EMC
HLP
IC

ID
ISO
LCD
LED
RPM
RX
SIW
TTL
TX
USB

Acronyms and abbreviations

Acknowledge
Analogue-to-digital converter
Controller area network

CAN high

CAN low

Complementary metal oxide semiconductor
Cyclic redundancy check
Digital-to-analogue converter
Electronic control unit
Electromagnetic compatibility
High level protocol

Integrated circuit

Identifier (or identification)
International Standards Organization
Liquid crystal display

Light emitting diode
Revolutions per minute
Receive

Synchronization jump width
Transistor-transistor logic
Transmit

Universal serial bus

CP2793-02 CAN Bus Training

CAN Bus Training — Course Notes

Copyright © 2014-2021 Matrix TSL

