
1

Using MQTT in Flowcode to
Communicate between Embedded and
App Developer Projects
Introduction
This worked example will detail a simple application for exchanging messages between embedded

and non-embedded devices using the popular MQTT protocol. Flowcode is used to create three apps

as follows:

• an embedded app running on an ESP32 device,

• a PC app (created using PC Developer) running on a Windows PC, and

• a web app (created using Web Developer) running in a web browser.

Flowcode is predominantly used to simplify the development of embedded software projects, but

also allows users to develop apps that can interact with these embedded programs using Flowcode

App Developer. App Developer has two modes – PC Developer creates apps that run on Windows

PCs and Web Developer creates apps that run in a web browser.

MQTT is a light-weight messaging protocol for machine-to-machine (M2M) communication that is

commonly used for Internet of Things (IoT) applications. It uses a publish/subscribe model where

several clients connect to a single server (sometimes known as a broker).

MQTT clients can “publish” messages to the MQTT server. At their simplest, these messages consist

of a topic name and a data payload, which can be a string or an array of bytes. These clients can also

“subscribe” to topics, meaning that any published messages using that topic name will automatically

be sent on by the server to them.

A central MQTT server is needed to coordinate the collection and distribution of these MQTT

messages. There are several options available (free and commercial), and this worked example will

use a local PC-based Mosquitto installation. Other options, including free on-line servers, will be also

discussed.

More information about MQTT can be found on the Internet, where you will often see the term

“broker” and “server” being used interchangeably. In this document, the term “server” will be used

as this is the standardised term used within the latest MQTT specification.

The three Flowcode MQTT client apps are designed to run together as a system by exchanging

messages with the MQTT server using the same 2 topics – “mtx” and “val”. These apps will publish

and subscribe messages using these two topics, allowing communication between the embedded

device, the PC and any browser hosting the web app. An MQTT server will be needed, but each of

the MQTT client apps are optional and can be developed independently (although at least 2 clients

are preferable to show the communication between different clients).

2

Installing and Testing the MQTT Server
This section will provide steps to set up and test a local MQTT server on a PC using the open source

Mosquitto server. Alternative MQTT servers can be used instead, and these are discussed later in

this document.

Installing the server
At the time or writing, Mosquitto can be downloaded from this site:

 https://mosquitto.org/download/

The version used by this worked example is v2.0.16 installed on a Windows PC, but the latest version

should be fine too.

Once downloaded and installed, a few edits to the “mosquitto.conf” file are needed. The first is to

specify the ports that clients will use to connect to the server. Flowcode-made apps require 2 ports

to be available – “mqtt” (used by Embedded and PC Developer apps) and “websockets” (used by

Web Developer apps). The following entries (just the highlighted ones) should be added to the

“Listeners” section of the config file:

listener port-number [ip address/host name/unix socket path]

#listener

listener 1883

protocol mqtt

listener 8883

protocol websockets

The second edit is to enable MQTT clients that are not on the local PC (such as the ESP32 device or a

different PC on the network) to connect to the server. This requires finding the following entry under

“Security” and replacing it with the highlighted one:

#allow_anonymous false

allow_anonymous true

Running the server
To start the server, first open a command prompt. For example, by pressing Windows-R and entering

“cmd” (without quotes) in the “Run” dialog:

In this, type the following and press return. Replace the highlighted %PATH_TO_MOSQUITTO% with

the actual location of your local Mosquitto installation:

%PATH_TO_MOSQUITTO%\mosquitto.exe -v -c %PATH_TO_MOSQUITTO%\mosquitto.conf

For example, my installation is in “E:\UTILS\mosquitto” and so I enter the highlighted line below.

This starts mosquitto in verbose mode, which forces the server to output information which will be

helpful for debugging connection issues. Some of these debugging messages are output showing the

version and the ports being used for MQTT messages:

https://mosquitto.org/download/

3

To stop the MQTT server, click on this command window and press Ctrl-C, then close that window.

But this will not be necessary yet because it needs to be running to be able to test and use it!

Testing the server
To test the server is working, two more command prompts can be used – one to subscribe to an

MQTT topic and another to publish a message to that topic. This will mean we have 3 command

prompt windows open:

• 1st = run the server and display debug info

• 2nd = subscribe to a topic and display received messages

• 3rd = publish a test message

To subscribe, enter the following into one of these new command prompt windows:

%PATH_TO_MOSQUITTO%\mosquitto_sub.exe -t "mtx" -p 1883

This should produce several debugging messages (in the original command window used to run the

server) showing that a client has connected and has subscribed to the “mtx” message:

In the 3rd command prompt window, enter the following to publish a message on this same “mtx”

topic:

%PATH_TO_MOSQUITTO%\mosquitto_pub.exe -t "mtx" -m "my new msg" -p 1883

Again, this will produce some debugging messages in the first command prompt window showing

client connection, reception of the message and sending it on to the subscribed client:

The message will also appear in the command prompt window used by the subscribing client:

4

PC Developer App
Flowcode PC Developer is used to create a Windows-based app that will exchange messages with the

embedded app via the MQTT server. The first step is to add components to the 2d panel to create a

user interface (UI) for the app and to provide communications facilities.

The image below shows a panel using added shapes and text to create a nice-looking UI, but only

those components shown with the coloured arrows are necessary for this worked example. The

panel itself is to the right, the components and their location within the components toolbar in

Flowcode is shown on the left, and the name and purpose of each component shown below.

• MQTT_Client1 – holds the MQTT client code.

• NetworkComms1 – code for using the network.

• txtTopic – shows the topic name of a received message.

• txtPayload – shows the payload of a received message.

• txtValue – shows the value received on the “val” topic.

• swMsg1 – sends a message on the “mtx” topic.

• swMsg2 – sends another message on the “mtx” topic.

• gaugeValue - displays the value received on the “val” topic.

Most of these components can keep their default property values after being added to the panel,

apart from the MQTT component which needs to use the properties below (assuming a Mosquitto

server has been configured to run on the local network as previously outlined).

5

Several global variables will be used within this program as shown in this table:

Variable name Type Purpose

IsConnected Byte Keeps track of MQTT server connection (0 = unconnected)

result UInt Used to hold the value of MQTT macro results

ping_counter UInt Counter to ensure the server is regularly ‘pinged’

SendMsg Bool Flag to show if a message should be sent

topic[32] String The received message topic name

payload[100] String The received message payload (i.e. contents)

Value Floating point Stores the value received by the “val” message as a number

There are only 2 macros used in this program – “Main” and “DisplayIncoming” – with the former

containing most of the code. Below shows the set-up code in the Main macro:

The global variables are first initialised and then the program enters an infinite loop which tries to

connect to the MQTT server and if this fails, it delays before trying again. On successful connection,

two MQTT message topics – “mtx” and “val” are subscribed to and another loop is entered. This

inner loop is shown below and is executed continually until the connection to the server is no longer

available.

6

The loop starts with a check for subscribed messages and calls the DisplayIncoming macro if any have

been received.

Next, each switch is checked in turn and if any are on then the appropriate outgoing message is

published to the MQTT server. Any switch that is on is now turned off and can be pressed again by

the user when the message needs to be sent again.

Finally, a ‘ping’ is sent to the MQTT server so that the connection to the server is maintained. This

‘ping’ also checks that the server is still available and connected. If it is not, the global “IsConnected”

variable is set to zero which ends the inner loop and forces the program to reconnect with the server.

7

The DisplayIncoming macro read the topic and payload and sets the appropriate textbox with these

values. The program has subscribed to only the “mtx” and “val” topics, so no others should be

received.

If the “val” topic is received, the payload string is converted to a floating-point value and displayed

on the gauge and in its associated textbox.

This project can now be deployed as a stand-alone PC app file the File…Export menu.

8

Web Developer app
As with the other apps, the UI of the web app will first be developed. Again, the panel has been

constructed with added shapes in the image below to make it look nice, but the important

components have been highlighted. The location of these components in the Components toolbar

are shown to the left of the panel image and their names and function listed below.

• btnConnect – button to initiate connection to the MQTT client.

• txtTopic – shows the topic name of a received message.

• txtMessage – shows the payload of a received message.

• btnSendMtx – sends a text message on the “mtx” topic.

• btnSendVal – sends a numeric value on the “val” topic.

• Slider – sets the value to send when btnSendVal is clicked.

• WebMQTT1 – holds the MQTT client code.

• WebPopup1 – code for displaying messages and getting user input.

9

The properties for the MQTT client component are shown below, assuming a local MQTT server is

being used as described previously. Take special note that the Port property requires a different

value to the Embedded and PC Developer apps. This is because, unlike the others, the Web

Developer app uses the websockets protocol to communicate with the server.

Also note that 2 Callback macros need to be defined. These are for the “OnConnected” and

“OnMessageArrived” notifications. Also shown above is some of the properties for the btnConnect

button which is set to call a macro when a user clicks that button.

The use of macros for callbacks and user events (like button clicks) is commonly used in Web

Developer apps. To create these macros, click the drop-down menu next to the property and select

“<Add new>”. This will show a dialog box with the recommended parameters for the macro.

The macros associated with these and the other buttons are listed below:

Component Property Macro Function

WebMQTT1
OnConnected OnMqttConnected

Called when an MQTT connection
to the server has been
successfully established. Once
received, the app can subscribe to
topics.

OnMessageArrived OnMqttMessageArrived
Called when an MQTT message
has arrived at this client.

btnConnect OnClick Macro OnClickConnect
The user will click this button to
establish a connection with the
MQTT server.

btnSendMtx OnClick Macro SendMtxClick
The user clicks this button to send
an MQTT text message.

btnSendVal OnClick Macro SendValClick
The user clicks this button to send
the value of the slider as an MQTT
message.

The 5 macros listed above are the only user macros created for this Web Developer project. There is

a “Main” macro, but this will contain no code (not even an infinite loop). This is different to

traditional Embedded and PC Developer apps and is because Web Developer projects are

constructed using an “event driven” approach.

10

Before discussing each individual macro, it is worth considering the overall flow of the program

structure because this will also be different to the Embedded and PC Developer apps. In this simple

Web Developer project, the flow of the program will be based on the various events that occur – i.e.

when the user clicks a button, when a connection to the MQTT server is established and when an

MQTT message arrives.

For example, the flow of the web app program when establishing a connection with the MQTT server

is listed below:

1) Once the web app loads, none of its code will currently be executing.

2) When the user clicks the “Connect” button, the OnClickConnect macro is executed.

3) This macro initiates connection to the MQTT server.

4) The macro completes and at this point, no code will be running.

5) Once the MQTT server responds to confirm connection the OnMqttConnected macro will be

executed.

6) This macro subscribes the web app to the MQTT topics.

7) Again, the macro completes and no code will be running.

At this point, the MQTT server link has been established and the web app is subscribed to the

required topics. The user could click a button to send a message, or a message could be sent by the

server and received by this app. Each of these events will result in the associated macro being called.

All five macros in this web app are simple and contain just a few command icons. They generally use

local variables, except a global Boolean variable (“b”) is used to check the macro responses from the

MQTT client component.

Here is the OnClickConnect macro, which initiates the connection to the MQTT server. The response

is checked, and a message is displayed if it fails for some reason (for example, the server may already

be connected).

11

The following 2 macros show the button click macros for the “mtx” message and the “val message.

The first one asks the user for the message text using the Popup Message component and the

second uses the current value of the slider as the message payload.

12

And finally, the macros associated with the MQTT component callbacks are shown below. The first is

called when a link has been established to the server and contains code that subscribes to the

message topics. The other is called when an MQTT message arrives – displaying the text of the topic

and payload in the web app and adjusting the slider value accordingly.

The web app can be created using the Deploy option in Flowcode’s File…Export menu or the “Create

web page” item in the Build menu. The resulting HTML file can be opened in a web browser on the

local PC, a mobile phone, or similar device.

13

Embedded App
This is the most complicated of the three Flowcode apps and is based on an ESP32 board connected

to a single button switch, a potentiometer, and an LCD.

Component panel
The 2D panel holds six components – three are required to enable web-based communication and

the other three are used for user I/O on the hardware. The panel is shown below, with the location

of the components in the toolbar shown on the left.

The properties of the three I/O components should be set to reflect the connections in the actual

hardware. The WLAN and NetworkComms component use default properties, although the latter

needs to be linked to the WLAN component using the ‘LinkTo’ property. Similarly, the MQTT Client

component needs to be linked to the NetworkComms component. It also needs to be configured to

connect to the MQTT server. These settings are shown below.

The ’Host’ property will be the IP address of the computer on the local network that is running the

MQTT server or, if applicable, the web address of the remote MQTT server being used.

The panel components have the following functions:

• MQTTClient1 – contains the MQTT client code.

• NetworkComms1 – code for enabling TCP/IP comms on the network.

• WLAN_ESP32 – code for communicating via the local Wi-Fi.

• LCD_BL0169 – displays received messages as well as status and error reports.

• swMsg1 – represents the switch connected to the ESP32 for initiating sending of a message.

• Potentiometer1 – reads the value of the potentiometer connected to the ESP32.

14

This embedded app has several user macros that are described below. It also uses the following

global variables:

Variable name Type Purpose

bConnected Bool Keeps track of MQTT server connection (0 = unconnected)

bPingFlag Bool Timer interrupt sets this to ensure the server remains connected

bWifiOk Bool Set when the app has successfully connected to the W0Fi

iError Byte Holds the value of an error if one is detected

iResponse Byte General use for holding the response of an MQTT operation

sData[200] String Used to create messages to display and to send as an MQTT message

Macro: Main
For clarity, this program has been split into several user macros which are called during the execution

of the Main macro.

After first initialising the Wi-Fi and MQTT comms, this macro enables a timer interrupt (set to a

period of 30 seconds) which calls a small macro that simply sets the bPingFlag variable. An infinite

loop is then started which connects to the MQTT server or responds to incoming messages and user

input. Also in this loop, any error conditions are checked for.

15

Macro: InitialiseComms
After the WLAN component is initialised, an attempt is made to connect to the local Wi-Fi network.

The name and password for the network must be entered correctly in the call to ConnectToSSID

before the program is compiled and downloaded to the ESP32.

If the Wi-Fi connection fails, the program will display an error message on the display and then enter

an infinite loop. This probably indicates that the network name and/or password are incorrect.

If the Wi-Fi connection is established, the MQTT Client component is initialised and the macro

returns.

16

Macro: ConnectToServer
When the infinite loop of the Main macro is first executed, the bConnected flag will be set to zero,

which indicates that the device is not yet connected to the MQTT server, and the following macro

will be executed.

This macro attempts to connect to the MQTT server using the settings in the MQTT Client properties.

If connection is successful, the program will subscribe to the “mtx” topic. Messages are displayed on

the LCD to show the progress of this process.

17

Macro: PingIfNeeded
If the MQTT server connection is valid, the Main macro will call three macros. The first checks to see

if the bPingFlag variable has been set and, if so, a ‘ping’ message is sent to the MQTT server to

ensure the connection remains established. This flag is set to “1” every 30 seconds using an

interrupt and the associated macro.

Macro: CheckButtons
Another macro called within the Main loop checks the state of the button and if pressed it publishes

an MQTT message. This message depends on the potentiometer reading – values above 60 cause an

error message to be sent on the “mtx” topic and lower values send the value on the “val” topic.

18

Macro: CheckIncomingMessages
This macro is called before the previous macro and checks to see if an MQTT message has been

received. If one is available, its topic name and payload are read and then output to the display.

This program subscribes to the “mtx” message and so only that message will be received by this app.

19

Macro: CheckForErrors
The LCD is also used to display any errors that have occurred. This macro is called at the end of the

main loop and checks the MQTT Client component to see if any errors have occurred. If they have,

or if the app has disconnected from the server, the error is displayed.

Compiling the project
Before compiling this project, the COM port used to connect to and reprogram the ESP32 device

needs to be set. To do this, open the Project Options screen (in Flowcode’s Build menu) and set the

correct port in the Programmer Port drop-down.

It is also important to set the correct Wi-Fi network name and password in the call to

WLAN_ESP32::ConnectToSSID in the InitialiseComms macro.

To compile the project and send the app to the ESP32 device, select “Compile to target” from the

Build menu.

20

MQTT Alternatives
The MQTT server used in this worked example is Mosquitto v2.0.16 on a Windows PC, but other

solutions exist and can be used in preferred.

Mosquitto itself can be installed on several different platforms – local Mac or Linux PCs, single-board

computers such as the Raspberry Pi, or a web server. In this case, the installation and configuration

settings will dictate the required MQTT Client component properties within Flowcode.

Online MQTT servers also exist that are free to use publicly for test purposes. For example, here are

details for two popular free servers:

broker.hivemq.com

• Host: broker.hivemq.com

• Ports:

o 1883: TCP Port

o 8883: TLS TCP Port

o 8000: WebSocket Port

o 8884: TLS WebSocket Port

test.mosquitto.org

• Host: test.mosquitto.org

• Ports:

o 1883 : MQTT, unencrypted, unauthenticated

o 1884 : MQTT, unencrypted, authenticated

o 8883 : MQTT, encrypted, unauthenticated

o 8884 : MQTT, encrypted, client certificate required

o 8885 : MQTT, encrypted, authenticated

o 8886 : MQTT, encrypted, unauthenticated

o 8887 : MQTT, encrypted, server certificate deliberately expired

o 8080 : MQTT over WebSockets, unencrypted, unauthenticated

o 8081 : MQTT over WebSockets, encrypted, unauthenticated

o 8090 : MQTT over WebSockets, unencrypted, authenticated

o 8091 : MQTT over WebSockets, encrypted, authenticated

Note that few servers should be used with caution as they are designed for testing purposes only and

so message delivery is not guaranteed or could be limited. The server might be closed for

maintenance or access could be blocked (if abused). And as they are publicly available, messages

can be received and send by others using the same topic name.

For commercial projects, a paid-for server should be used instead. Several companies offer

commercial MQTT servers, with various levels of service, features, and cost.

21

Conclusion
This document shows how easy it is to use Flowcode to create a set of apps that communicate with

each other using the popular MQTT protocol. These apps can run on a range of network-connected

devices such as ESP32s and other embedded devices, Windows PCs, and mobile phones.

It has discussed the three types of projects that can be created using Flowcode – Embedded, PC

Developer and Web Developer – and shown how to use the MQTT Client components in each to

interface with an MQTT server and communicate with each other by subscribing to and publishing

MQTT topics.

It has also shown how to set up a local Mosquitto MQTT server and provided suggestions for

alternative MQTT servers that already exist on the Internet.

The concepts used provide a firm foundation in using MQTT with Flowcode and can be extended to

create many diverse types of application that need to communicate simple messages across a local

or global network.

	Introduction
	Installing and Testing the MQTT Server
	Installing the server
	Running the server
	Testing the server

	PC Developer App
	Web Developer app
	Embedded App
	Component panel
	Macro: Main
	Macro: InitialiseComms
	Macro: ConnectToServer
	Macro: PingIfNeeded
	Macro: CheckButtons
	Macro: CheckIncomingMessages
	Macro: CheckForErrors
	Compiling the project

	MQTT Alternatives
	Conclusion

