Difference between revisions of "Component: I2C Master (Comms: Interface)"

From Flowcode Help
Jump to navigationJump to search
Line 16: Line 16:
  
 
==Detailed description==
 
==Detailed description==
 +
 +
  
  
Line 74: Line 76:
  
 
Stop
 
Stop
 +
 +
  
  
Line 80: Line 84:
  
 
==Examples==
 
==Examples==
 +
 +
  
  
Line 110: Line 116:
  
 
[[File:DS1307Ram.jpg]]
 
[[File:DS1307Ram.jpg]]
 +
 +
  
  

Revision as of 14:25, 31 August 2021

Author Matrix Ltd.
Version 1.4
Category Comms: Interface


I2C Master component

Generic Two Wire I2C Communications Interface

Detailed description

Overview

The I2C bus is a medium speed communications bus which is usually best suited for talking between devices situated on the same circuit board. Due to the high frequency digital nature of the bus care should be taken to keep tracks as short as possible and as far away as possible from other sources of noise. A typical I2C bus consists of two signals, data and clock. The I2C bus usually consists of a single master device and then one or more slave devices. The master device initiates all the communications and can only communicate with a single device on the bus at a time by sending a unique device address as the first byte.

Each I2C transaction consists of a start and a stop as well as one or more data bytes made up of 8 clock cycles allowing the 8-bits of each byte to be transferred. Each byte send is followed by an Ack (acknowledged) or a Nak (not acknowledged) from the receiving device.

I2C Bytes.jpg


Pull up resistors

The I2C bus usually requires pull up resistors in the range of 4.7K to 10K between the two I2C signals and VCC. Some I2C devices have the pull up resistors built in so as to avoid external components.

The pull up resistors can be useful when interfacing a 5V microcontroller to a 3V3 sensor as the pull up resistor can be connected to 3V3 to eliminate the need for voltage level shifting.


Start / Restart / Stop

The Start, Restart and Stop operations are each states which the bus can be put into using the I2C specification.


Generic Write Transaction

A generic write transaction to a memory device might look something like this:

Start

Send External Device Address Byte (Write mode)

Send Internal Address Byte

Send Data Byte

Stop


Generic Read Transaction

A generic read transaction to a memory device might look something like this:

Start

Send External Device Address Byte (Write mode)

Send Internal Address Byte

Restart

Send External Device Address Byte (Read mode)

Read Data Byte

Stop




Examples

More information on I2C can be found here,

Matrix Flowcode Blog: Simplified communications I2C and SPI


Generic I2C EEPROM

Example file demonstrating how to read and write bytes from a generic I2C EEPROM device. FC6 Icon.png I2CEEPROM

Simulated I2C devices

This example uses the I2C master component combined with the DS1307 injector to simulate an I2C communications bus between the target Microcontroller and the virtual DS1307 device. FC6 Icon.png I2C DS1307 Example The panel displays the current time from the DS1307 RAM which is populated to match the system time.

DS1307Panel.jpg


The I2C console shows the communications between the target microcontroller and simulated I2C device.

DS1307Data.jpg


The DS1307 console shows the contents of RAM memory on the simulated I2C device.

DS1307Ram.jpg




Downloadable macro reference

Fc9-comp-macro.png ReceiveByte
Receives a byte from the I²C bus.  
Fc9-u8-icon.png - BYTE Last
Used to signify the last byte when streaming incoming data. 0=Not last byte, 1=Last Byte 
Fc9-u8-icon.png - BYTE Return


Fc9-comp-macro.png Restart
Outputs a restart condition onto the I²C bus. 
Fc9-void-icon.png - VOID Return


Fc9-comp-macro.png Stop
Outputs a stop condition onto the I²C bus. 
Fc9-void-icon.png - VOID Return


Fc9-comp-macro.png Transaction_Write
Attempt to write Length number of bytes to the I2C slave from the given Buffer. Ensure that the Buffer is large enough. Returns the number of bytes written, the caller should check that this matches requested Length 
Fc9-u8-icon.png - BYTE Buffer
Buffer of bytes to write to the I2C 
Fc9-u16-icon.png - UINT Length
Number of bytes to send out, MS bit 0x8000 signifies no Stop if set 
Fc9-u16-icon.png - UINT Return


Fc9-comp-macro.png TransmitByte
Sends a byte on the I²C bus. Returns the acknowledge if any. 0 represents that data was acknowledged and 1 represents no acknowledge was detected. 
Fc9-u8-icon.png - BYTE Data
Data byte to send on the I²C bus. 
Fc9-u8-icon.png - BYTE Return


Fc9-comp-macro.png GenericWriteRegister
Function to perform a generic I2C Write transaction. The 7-bit device ID is automatically shifted up by one bit to make room for the read/write bit. 
Fc9-u8-icon.png - BYTE Device_ID
7-bit Device Address ID 
Fc9-u16-icon.png - UINT Address
 
Fc9-u8-icon.png - BYTE Data
Data Byte 
Fc9-u8-icon.png - BYTE AddressByteCount
Specifies the number of address bytes, Range: 1 or 2 
Fc9-void-icon.png - VOID Return


Fc9-comp-macro.png Transaction_Uninit
Uninitialise the I2C interface 
Fc9-void-icon.png - VOID Return


Fc9-comp-macro.png GenericReadRegister
Function to perform a generic I2C read. The 7-bit device ID is automatically shifted up by one bit to make room for the read/write bit. Returns the data from the location specified. 
Fc9-u8-icon.png - BYTE Device_ID
7-bit Device Address ID 
Fc9-u16-icon.png - UINT Address
 
Fc9-u8-icon.png - BYTE AddressByteCount
Specifies the number of address bytes, Range: 1 or 2 
Fc9-u8-icon.png - BYTE Return


Fc9-comp-macro.png Transaction_Read
Attempt to read Length number of bytes from the I2C slave to the given Buffer. Ensure that the Buffer is large enough. Returns number of bytes read, caller should check that this matches requested Length 
Fc9-u8-icon.png - BYTE Buffer
Buffer to store the incoming byte data 
Fc9-u16-icon.png - UINT Length
Number of bytes to read 
Fc9-u16-icon.png - UINT Return


Fc9-comp-macro.png Start
Outputs a start condition onto the I²C bus. 
Fc9-void-icon.png - VOID Return


Fc9-comp-macro.png Transaction_Initialise
Initialise the I2C interface to communicate with a Slave device at Address Returns 0 on fail, 1 on success 
Fc9-u8-icon.png - BYTE Address
7-bit I2C Address without the shift for the R/W bit 
Fc9-u8-icon.png - BYTE Return


Fc9-comp-macro.png Initialise
Enables the I²C hardware and performs some initialization. Should be called at the start of the program or at least before any of the other I²C functions are called. 
Fc9-void-icon.png - VOID Return


Fc9-comp-macro.png CheckNetworkStatus
Returns the state of the GSM network. 0 = Not connected, 1 = connected, 255 = no reply from GSM. 
Fc9-u8-icon.png - BYTE Return


Fc9-comp-macro.png CheckForIncoming
Checks to see if any incoming phone call or SMS message. 0 = Nothing, 1 = Text Received, 2 = Phone Ringing 
Fc9-u8-icon.png - BYTE Return


Fc9-comp-macro.png Initialise
Sets up the GSM module. Returns 0 for OK, 255 for no reply and 254 for command fail. 
Fc9-u8-icon.png - BYTE Return



Property reference

Fc9-prop-icon.png Properties
Fc9-type-16-icon.png Channel
Channel selection 
Fc9-type-16-icon.png Baud Select
Baud rate option selector 
Fc9-type-14-icon.png Baud Rate
Baud rate to be used 
Fc9-type-7-icon.png Stop Delay
On older microcontroller devices there is a potential for the I2C hardware channel to lock up if there is not a 10ms delay between an I2C stop event and the next I2C start event. Most modern microcontrollers will not have a problem so this property can be disabled to speed up the I2C communications.  
Fc9-type-16-icon.png Slew Rate Control
Slew Rate Control Enabled or Disabled 
Fc9-type-16-icon.png SMBus Inputs
When Enabled input logic thresholds are compliant with SMBus specification 
Fc9-conn-icon.png Connections
Fc9-type-5-icon.png SDA
Pin used for SDA (data signal) 
Fc9-type-5-icon.png SCL
Pin used for SCL (clock signal) 
Fc9-conn-icon.png Simulations
Fc9-type-10-icon.png Label
Label shown on the comms flasher on the simulation panel. 
Fc9-type-7-icon.png Scope Traces
Selects if the scope traces are automatically generated or not 
Fc9-type-7-icon.png Console Data
Selects if the console data is automatically generated or not 
Fc9-type-16-icon.png API